論文の概要: CKAA: Cross-subspace Knowledge Alignment and Aggregation for Robust Continual Learning
- arxiv url: http://arxiv.org/abs/2507.09471v1
- Date: Sun, 13 Jul 2025 03:11:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.271023
- Title: CKAA: Cross-subspace Knowledge Alignment and Aggregation for Robust Continual Learning
- Title(参考訳): CKAA:ロバストな連続学習のためのクロスサブスペース知識アライメントと集約
- Authors: Lingfeng He, De Cheng, Zhiheng Ma, Huaijie Wang, Dingwen Zhang, Nannan Wang, Xinbo Gao,
- Abstract要約: 継続的学習(CL)は、シーケンシャルなタスクストリームから継続的に学習するAIモデルに権限を与える。
近年,パラメータ効率のよい微調整(PEFT)によるCL法が注目されている。
ミスリード型タスクIDに対するロバスト性を高めるために,クロスサブスペース・ナレッジアライメント・アグリゲーション(CKAA)を提案する。
- 参考スコア(独自算出の注目度): 80.18781219542016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual Learning (CL) empowers AI models to continuously learn from sequential task streams. Recently, parameter-efficient fine-tuning (PEFT)-based CL methods have garnered increasing attention due to their superior performance. They typically allocate a unique sub-module for learning each task, with a task recognizer to select the appropriate sub-modules for testing images. However, due to the feature subspace misalignment from independently trained sub-modules, these methods tend to produce ambiguous decisions under misleading task-ids. To address this, we propose Cross-subspace Knowledge Alignment and Aggregation (CKAA), a novel framework that enhances model robustness against misleading task-ids through two key innovations: (1) Dual-level Knowledge Alignment (DKA): By aligning intra-class feature distributions across different subspaces and learning a robust global classifier through a feature simulation process, DKA enables the model to distinguish features from both correct and incorrect subspaces during training. (2) Task-Confidence-guided Mixture of Adapters (TC-MoA): A robust inference scheme that adaptively aggregates task-specific knowledge from relevant sub-modules based on task-confidence scores, avoiding overconfidence in misleading task-id predictions. Extensive experiments demonstrate that CKAA outperforms existing PEFT-based CL methods.
- Abstract(参考訳): 継続的学習(CL)は、シーケンシャルなタスクストリームから継続的に学習するAIモデルに権限を与える。
近年,パラメータ効率のよい微調整(PEFT)によるCL法が注目されている。
通常、各タスクを学習するためのユニークなサブモジュールを割り当て、イメージをテストするための適切なサブモジュールを選択するタスク認識器を配置する。
しかし、独立に訓練されたサブモジュールの機能的部分空間のミスアライメントのため、これらの手法はタスクIDを誤解させることなく曖昧な決定を下す傾向にある。
そこで我々は,(1)二段階知識調整(DKA: Dual-level Knowledge Alignment): 異なる部分空間にまたがるクラス内特徴分布の整列化と,特徴シミュレーションプロセスを通じてロバストなグローバルな分類器の学習により,DKAにより,モデルがトレーニング中の正しい部分空間と不正確な部分空間の両方から特徴を識別できる新しいフレームワークであるCKAAを提案する。
2)タスク信頼誘導型アダプタ混合(TC-MoA):タスク信頼度スコアに基づいてタスク固有の知識を適応的に集約する頑健な推論手法。
大規模な実験により、CKAAは既存のPEFTベースのCL法よりも優れていることが示された。
関連論文リスト
- DUKAE: DUal-level Knowledge Accumulation and Ensemble for Pre-Trained Model-Based Continual Learning [19.684132921720945]
事前学習型モデルベース連続学習(PTMCL)は,新たな知識のより迅速な獲得を可能にするため,注目を集めている。
本稿では,機能レベルと意思決定レベルの知識蓄積を両立させるDual-level Knowledge Accumulation and Ensemble(DUKAE)を提案する。
CIFAR-100、ImageNet-R、CUB-200、Cars-196データセットの実験は、我々のアプローチの優れた性能を示している。
論文 参考訳(メタデータ) (2025-04-09T01:40:38Z) - SAPT: A Shared Attention Framework for Parameter-Efficient Continual Learning of Large Language Models [71.78800549517298]
大規模言語モデル(LLM)を動的世界に展開するには,継続的な学習(CL)能力が不可欠である。
既存の方法は、パラメータ効率チューニング(PET)ブロックを用いてタスク固有の知識を取得するための学習モジュールと、テスト入力に対して対応するものを選択するための選択モジュールを考案する。
本稿では,共有注意学習と選択モジュールを通じてPET学習と選択を調整するための新しい共有注意フレームワーク(SAPT)を提案する。
論文 参考訳(メタデータ) (2024-01-16T11:45:03Z) - KOPPA: Improving Prompt-based Continual Learning with Key-Query Orthogonal Projection and Prototype-based One-Versus-All [24.50129285997307]
本稿では,新しいキークエリ学習戦略を導入し,マッチング効率を向上し,機能変更の課題に対処する。
提案手法は,現在の最先端手法を最大20%の差で超えた結果を達成するためのモデルである。
論文 参考訳(メタデータ) (2023-11-26T20:35:19Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
pRotOtypeal taSk corrElaTion guided gaTingAnism (ROSETTA)による連続物体検出のためのフレキシブルなフレームワークを提案する。
具体的には、統一されたフレームワークはすべてのタスクで共有され、タスク対応ゲートは特定のタスクのサブモデルを自動的に選択するために導入されます。
COCO-VOC、KITTI-Kitchen、VOCのクラスインクリメンタル検出、および4つのタスクの逐次学習の実験により、ROSETTAが最先端のパフォーマンスを得ることが示された。
論文 参考訳(メタデータ) (2022-05-06T07:31:28Z) - Weakly Supervised Semantic Segmentation via Alternative Self-Dual
Teaching [82.71578668091914]
本稿では,分類とマスク・リファインメント・コンポーネントを統合された深層モデルに組み込む,コンパクトな学習フレームワークを確立する。
本稿では,高品質な知識相互作用を促進するために,新たな自己双対学習(ASDT)機構を提案する。
論文 参考訳(メタデータ) (2021-12-17T11:56:56Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。