Ref-Long: Benchmarking the Long-context Referencing Capability of Long-context Language Models
- URL: http://arxiv.org/abs/2507.09506v2
- Date: Mon, 04 Aug 2025 01:12:15 GMT
- Title: Ref-Long: Benchmarking the Long-context Referencing Capability of Long-context Language Models
- Authors: Junjie Wu, Gefei Gu, Yanan Zheng, Dit-Yan Yeung, Arman Cohan,
- Abstract summary: Long-context language models (LCLMs) have exhibited impressive capabilities in long-context understanding tasks.<n>Long-context referencing is a crucial task that requires LCLMs to attribute items of interest to specific parts of long-context data.<n>This paper proposes Ref-Long, a novel benchmark designed to assess the long-context referencing capability of LCLMs.
- Score: 36.69535336525585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-context language models (LCLMs) have exhibited impressive capabilities in long-context understanding tasks. Among these, long-context referencing -- a crucial task that requires LCLMs to attribute items of interest to specific parts of long-context data -- remains underexplored. To bridge this gap, this paper proposes Referencing Evaluation for Long-context Language Models (Ref-Long), a novel benchmark designed to assess the long-context referencing capability of LCLMs. Specifically, Ref-Long requires LCLMs to identify the indexes of documents that reference a specific key, emphasizing contextual relationships between the key and the documents over simple retrieval. Based on the task design, we construct three subsets ranging from synthetic to realistic scenarios to form the Ref-Long benchmark. Experimental results of 13 LCLMs reveal significant shortcomings in long-context referencing, even among advanced models like GPT-4o. To further investigate these challenges, we conduct comprehensive analyses, including human evaluations, task format adjustments, fine-tuning experiments, and error analyses, leading to several key insights. Our data and code can be found in https://github. com/wujunjie1998/Ref-Long.
Related papers
- 100-LongBench: Are de facto Long-Context Benchmarks Literally Evaluating Long-Context Ability? [28.694112253150983]
Real-task-based long-context evaluation benchmarks have two major shortcomings.<n> benchmarks like LongBench often do not provide proper metrics to separate long-context performance from the model's baseline ability.<n>We introduce a length-controllable long-context benchmark and a novel metric that disentangles baseline knowledge from true long-context capabilities.
arXiv Detail & Related papers (2025-05-25T19:58:31Z) - A Comprehensive Survey on Long Context Language Modeling [118.5540791080351]
Long Context Language Models (LCLMs) process and analyze extensive inputs in an effective and efficient way.<n>Our survey is structured around three key aspects: how to obtain effective and efficient LCLMs, how to train and deploy LCLMs efficiently, and how to evaluate and analyze LCLMs comprehensively.
arXiv Detail & Related papers (2025-03-20T17:06:28Z) - Generalizing From Short to Long: Effective Data Synthesis for Long-Context Instruction Tuning [103.65680870130839]
We investigate how to design instruction data for the post-training phase of a long context pre-trained model.<n>Our controlled study reveals that models instruction-tuned on short contexts can effectively generalize to longer ones.<n>Based on these findings, we propose context synthesis, a novel data synthesis framework.
arXiv Detail & Related papers (2025-02-21T17:02:40Z) - What is Wrong with Perplexity for Long-context Language Modeling? [71.34933096461124]
Long-context inputs are crucial for large language models (LLMs) in tasks such as extended conversations, document summarization, and many-shot in-context learning.<n>Perplexity (PPL) has proven unreliable for assessing long-context capabilities.<n>We propose bfLongPPL, a novel metric that focuses on key tokens by employing a long-short context contrastive method to identify them.
arXiv Detail & Related papers (2024-10-31T09:39:28Z) - NeedleBench: Can LLMs Do Retrieval and Reasoning in Information-Dense Context? [43.98513461616172]
NeedleBench is a framework for assessing retrieval and reasoning performance in long-context tasks.<n>It embeds key data points at varying depths to rigorously test model capabilities.<n>Our experiments reveal that reasoning models like Deep-R1 and OpenAI's o3 struggle with continuous retrieval and reasoning in information-dense scenarios.
arXiv Detail & Related papers (2024-07-16T17:59:06Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - Long Context is Not Long at All: A Prospector of Long-Dependency Data for Large Language Models [13.091271774417867]
Long-context modeling capabilities are important for large language models (LLMs) in various applications.
We propose a data mining framework textbfProLong that can assign each training sample with a long dependency score.
Comprehensive experiments on multiple benchmarks indicate that ProLong effectively identifies documents that carry long dependencies.
arXiv Detail & Related papers (2024-05-28T07:36:56Z) - Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks [76.43527940649939]
We introduce Ada-LEval, a benchmark for evaluating the long-context understanding of large language models (LLMs)
Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs' long context capabilities.
We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval.
arXiv Detail & Related papers (2024-04-09T17:30:48Z) - NovelQA: Benchmarking Question Answering on Documents Exceeding 200K Tokens [63.7488938083696]
We introduce NovelQA, a benchmark tailored for evaluating Large Language Models (LLMs) with complex, extended narratives.<n>NovelQA offers a unique blend of complexity, length, and narrative coherence, making it an ideal tool for assessing deep textual understanding.<n>Our evaluation of long-context LLMs on NovelQA reveals significant insights into their strengths and weaknesses.
arXiv Detail & Related papers (2024-03-18T17:32:32Z) - LooGLE: Can Long-Context Language Models Understand Long Contexts? [46.143956498529796]
LooGLE is a benchmark for large language models' long context understanding.
It features relatively new documents post-2022, with over 24,000 tokens per document and 6,000 newly generated questions spanning diverse domains.
The evaluation of eight state-of-the-art LLMs on LooGLE revealed key findings.
arXiv Detail & Related papers (2023-11-08T01:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.