論文の概要: An Analysis of Action-Value Temporal-Difference Methods That Learn State Values
- arxiv url: http://arxiv.org/abs/2507.09523v1
- Date: Sun, 13 Jul 2025 07:34:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.45493
- Title: An Analysis of Action-Value Temporal-Difference Methods That Learn State Values
- Title(参考訳): 状態値学習のための行動価値時間差法の解析
- Authors: Brett Daley, Prabhat Nagarajan, Martha White, Marlos C. Machado,
- Abstract要約: 我々は、Regularized Dueling Q-learning (RDQ)と呼ばれる新しいAV学習アルゴリズムを導入し、MinAtarベンチマークでDueling DQNを著しく上回っている。
予測環境では,両家庭ともSarsaよりも効率がよいが,制御環境でのQ-ラーニングよりもAV-ラーニング法の方が大きなメリットがある。
- 参考スコア(独自算出の注目度): 22.93557381422187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The hallmark feature of temporal-difference (TD) learning is bootstrapping: using value predictions to generate new value predictions. The vast majority of TD methods for control learn a policy by bootstrapping from a single action-value function (e.g., Q-learning and Sarsa). Significantly less attention has been given to methods that bootstrap from two asymmetric value functions: i.e., methods that learn state values as an intermediate step in learning action values. Existing algorithms in this vein can be categorized as either QV-learning or AV-learning. Though these algorithms have been investigated to some degree in prior work, it remains unclear if and when it is advantageous to learn two value functions instead of just one -- and whether such approaches are theoretically sound in general. In this paper, we analyze these algorithmic families in terms of convergence and sample efficiency. We find that while both families are more efficient than Expected Sarsa in the prediction setting, only AV-learning methods offer any major benefit over Q-learning in the control setting. Finally, we introduce a new AV-learning algorithm called Regularized Dueling Q-learning (RDQ), which significantly outperforms Dueling DQN in the MinAtar benchmark.
- Abstract(参考訳): 時間差学習(TD)の目玉的特徴はブートストラップであり、新しい値予測を生成するために値予測を使用する。
制御のためのほとんどのTDメソッドは、単一のアクション値関数(例えば、Q-ラーニング、Sarsa)からブートストラップすることでポリシーを学習する。
2つの非対称な値関数からブートストラップするメソッド、すなわち、アクション値を学ぶ中間ステップとして状態値を学ぶメソッドには、顕著に注意が払われていない。
この静脈内の既存のアルゴリズムは、QV学習またはAV学習のいずれかに分類される。
これらのアルゴリズムは、以前の研究である程度研究されてきたが、1つではなく2つの値関数を学ぶのが有利なのか、また、そのようなアプローチが一般に理論上健全なのかは、まだ不明である。
本稿では,これらのアルゴリズムを収束とサンプル効率の観点から解析する。
予測環境では,両家庭ともSarsaよりも効率がよいが,制御環境でのQ-ラーニングよりもAV-ラーニング法の方が大きなメリットがある。
最後に、我々はRegularized Dueling Q-learning (RDQ)と呼ばれる新しいAV学習アルゴリズムを導入し、MinAtarベンチマークにおいてDueling DQNを大幅に上回っている。
関連論文リスト
- LAVA: Data Valuation without Pre-Specified Learning Algorithms [20.578106028270607]
我々は、下流学習アルゴリズムに不利な方法でトレーニングデータを評価できる新しいフレームワークを導入する。
本研究では,訓練と検証セット間の非伝統的なクラスワイドワッサースタイン距離に基づいて,トレーニングセットに関連する検証性能のプロキシを開発する。
距離は、特定のリプシッツ条件下での任意のモデルに対する検証性能の上限を特徴付けることを示す。
論文 参考訳(メタデータ) (2023-04-28T19:05:16Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
アクティブラーニングフレームワークは、最も有益なデータポイントのラベル付けを積極的に要求することで、データアノテーションのコストを削減することを目的としている。
提案手法には、不確実性に基づく手法、幾何学的手法、不確実性に基づく手法と幾何学的手法の暗黙の組み合わせなどがある。
本稿では, サンプル選択戦略における効率的な探索・探索トレードオフを実現するために, 不確実性に基づくフレームワークと幾何学的フレームワークの両方の最近の進歩を革新的に統合する。
本フレームワークは,(1)正確な後続推定,(2)計算オーバーヘッドと高い精度のトレードオフの2つの利点を提供する。
論文 参考訳(メタデータ) (2022-10-11T20:20:20Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
本稿では,意思決定に直接関連のある表現を学習するための,VCR(Value-Consistent Expression Learning)という新しい手法を提案する。
この想像された状態と環境によって返される実状態とを一致させる代わりに、VCRは両方の状態に$Q$-valueヘッドを適用し、2つのアクション値の分布を得る。
検索不要なRLアルゴリズムに対して,提案手法が新たな最先端性能を実現することが実証された。
論文 参考訳(メタデータ) (2022-06-25T03:02:25Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - A Generalized Bootstrap Target for Value-Learning, Efficiently Combining
Value and Feature Predictions [39.17511693008055]
値関数の推定は強化学習アルゴリズムのコアコンポーネントである。
値関数を推定する際に使用されるターゲットのブートストラップに焦点を当てる。
新たなバックアップターゲットである$eta$-returnmixを提案する。
論文 参考訳(メタデータ) (2022-01-05T21:54:55Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
数ショット分類のための高速な最適化に基づくメタラーニング手法を提案する。
我々の戦略はメタ学習において学習すべき基礎学習者の目的の重要な側面を可能にする。
我々は、我々のアプローチの速度と効果を実証し、総合的な実験分析を行う。
論文 参考訳(メタデータ) (2020-10-01T15:59:31Z) - Finite-Time Analysis for Double Q-learning [50.50058000948908]
二重Q-ラーニングのための非漸近的有限時間解析を初めて提供する。
同期と非同期の二重Q-ラーニングの両方が,グローバル最適化の$epsilon$-accurate近辺に収束することが保証されていることを示す。
論文 参考訳(メタデータ) (2020-09-29T18:48:21Z) - META-Learning Eligibility Traces for More Sample Efficient Temporal
Difference Learning [2.0559497209595823]
そこで本稿では,状態依存的な方法で,可視性トレースパラメータを調整するためのメタラーニング手法を提案する。
この適応は、更新対象の分布情報をオンラインで学習する補助学習者の助けを借りて達成される。
提案手法は,いくつかの前提条件下では,全体の目標誤差を最小限に抑えて,更新対象の全体的な品質を改善する。
論文 参考訳(メタデータ) (2020-06-16T03:41:07Z) - Zeroth-Order Supervised Policy Improvement [94.0748002906652]
政策勾配(PG)アルゴリズムは強化学習(RL)に広く用いられている。
ゼロ次監視政策改善(ZOSPI)を提案する。
ZOSPIは、PGメソッドの局所的な利用を保ちながら、推定値関数を全世界で$Q$で活用する。
論文 参考訳(メタデータ) (2020-06-11T16:49:23Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。