AICrypto: A Comprehensive Benchmark For Evaluating Cryptography Capabilities of Large Language Models
- URL: http://arxiv.org/abs/2507.09580v1
- Date: Sun, 13 Jul 2025 11:11:01 GMT
- Title: AICrypto: A Comprehensive Benchmark For Evaluating Cryptography Capabilities of Large Language Models
- Authors: Yu Wang, Yijian Liu, Liheng Ji, Han Luo, Wenjie Li, Xiaofei Zhou, Chiyun Feng, Puji Wang, Yuhan Cao, Geyuan Zhang, Xiaojian Li, Rongwu Xu, Yilei Chen, Tianxing He,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable capabilities across a variety of domains.<n>Our benchmark comprises 135 multiple-choice questions, 150 capture-the-flag (CTF) challenges, and 18 proof problems.<n>Our evaluation of 17 leading LLMs reveals that state-of-the-art models match or even surpass human experts in memorizing cryptographic concepts.
- Score: 18.222665072623755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities across a variety of domains. However, their applications in cryptography, which serves as a foundational pillar of cybersecurity, remain largely unexplored. To address this gap, we propose \textbf{AICrypto}, the first comprehensive benchmark designed to evaluate the cryptographic capabilities of LLMs. The benchmark comprises 135 multiple-choice questions, 150 capture-the-flag (CTF) challenges, and 18 proof problems, covering a broad range of skills from factual memorization to vulnerability exploitation and formal reasoning. All tasks are carefully reviewed or constructed by cryptography experts to ensure correctness and rigor. To support automated evaluation of CTF challenges, we design an agent-based framework. To gain deeper insight into the current state of cryptographic proficiency in LLMs, we introduce human expert performance baselines for comparison across all task types. Our evaluation of 17 leading LLMs reveals that state-of-the-art models match or even surpass human experts in memorizing cryptographic concepts, exploiting common vulnerabilities, and routine proofs. However, they still lack a deep understanding of abstract mathematical concepts and struggle with tasks that require multi-step reasoning and dynamic analysis. We hope this work could provide insights for future research on LLMs in cryptographic applications. Our code and dataset are available at https://aicryptobench.github.io.
Related papers
- Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Despite Etherscan's 78,047,845 smart contracts deployed on (as of May 26, 2025), a mere 767,520 ( 1%) are open source.<n>This opacity necessitates the automated semantic analysis of on-chain smart contract bytecode.<n>We introduce a pioneering decompilation pipeline that transforms bytecode into human-readable and semantically faithful Solidity code.
arXiv Detail & Related papers (2025-06-24T13:42:59Z) - Benchmarking Large Language Models for Cryptanalysis and Mismatched-Generalization [4.020376901658977]
Large Language Models (LLMs) have transformed natural language understanding and generation.<n> cryptanalysis a critical area for data security and encryption has not yet been thoroughly explored in LLM evaluations.<n>We evaluate cryptanalytic potential of state of the art LLMs on encrypted texts generated using a range of cryptographic algorithms.
arXiv Detail & Related papers (2025-05-30T14:12:07Z) - General-Reasoner: Advancing LLM Reasoning Across All Domains [64.70599911897595]
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains.<n>We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc.
arXiv Detail & Related papers (2025-05-20T17:41:33Z) - Tests as Prompt: A Test-Driven-Development Benchmark for LLM Code Generation [1.7268889851975326]
We introduce WebApp1K, a novel benchmark for evaluating large language models (LLMs) in test-driven development (TDD) tasks.<n>Unlike traditional approaches relying on natural language prompts, our benchmark emphasizes the ability of LLMs to interpret and implement functionality directly from test cases.
arXiv Detail & Related papers (2025-05-13T23:47:12Z) - CipherBank: Exploring the Boundary of LLM Reasoning Capabilities through Cryptography Challenges [42.16123880046729]
We introduce CipherBank, a benchmark designed to evaluate the reasoning capabilities of large language models (LLMs) in cryptographic decryption tasks.<n>We evaluate state-of-the-art LLMs on CipherBank, e.g., GPT-4o, DeepSeek-V3, and cutting-edge reasoning-focused models such as o1 and DeepSeek-R1.
arXiv Detail & Related papers (2025-04-27T03:41:17Z) - The Code Barrier: What LLMs Actually Understand? [7.407441962359689]
This research uses code obfuscation as a structured testing framework to evaluate semantic understanding capabilities of language models.<n>Findings show a statistically significant performance decline as obfuscation complexity increases.<n>This research introduces a new evaluation approach for assessing code comprehension in language models.
arXiv Detail & Related papers (2025-04-14T14:11:26Z) - TFHE-Coder: Evaluating LLM-agentic Fully Homomorphic Encryption Code Generation [10.597643264309415]
Homomorphic Encryption over the torus (TFHE) enables encrypted computation on data without decryption.<n>Despite its potential in privacy preserving machine learning, secure multi party computation, private blockchain transactions, and secure medical diagnostics, its adoption remains limited due to cryptographic complexity and usability challenges.<n>This work establishes the first benchmark for TFHE code generation, demonstrating how LLMs, when augmented with domain-specific feedback, can bridge the expertise gap in FHE code generation.
arXiv Detail & Related papers (2025-03-15T17:57:44Z) - DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation [48.11754113512047]
This study includes a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains.
Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study.
The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL.
arXiv Detail & Related papers (2024-08-23T16:33:58Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
Massive Multitask Agent Understanding (MMAU) benchmark features comprehensive offline tasks that eliminate the need for complex environment setups.
It evaluates models across five domains, including Tool-use, Directed Acyclic Graph (DAG) QA, Data Science and Machine Learning coding, Contest-level programming and Mathematics.
With a total of 20 meticulously designed tasks encompassing over 3K distinct prompts, MMAU provides a comprehensive framework for evaluating the strengths and limitations of LLM agents.
arXiv Detail & Related papers (2024-07-18T00:58:41Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
Uncertainty quantification is a key element of machine learning applications.<n>We introduce a novel benchmark that implements a collection of state-of-the-art UQ baselines.<n>We conduct a large-scale empirical investigation of UQ and normalization techniques across eleven tasks, identifying the most effective approaches.
arXiv Detail & Related papers (2024-06-21T20:06:31Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
We present textscPuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales.
A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities.
arXiv Detail & Related papers (2024-05-07T07:39:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.