prNet: Data-Driven Phase Retrieval via Stochastic Refinement
- URL: http://arxiv.org/abs/2507.09608v1
- Date: Sun, 13 Jul 2025 12:25:06 GMT
- Title: prNet: Data-Driven Phase Retrieval via Stochastic Refinement
- Authors: Mehmet Onurcan Kaya, Figen S. Oktem,
- Abstract summary: We propose a novel framework for phase retrieval that leverages Langevin dynamics to enable efficient posterior sampling.<n>Our method navigates the perception-distortion tradeoff through a combination of sampling, learned denoising, and model-based updates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel framework for phase retrieval that leverages Langevin dynamics to enable efficient posterior sampling, yielding reconstructions that explicitly balance distortion and perceptual quality. Unlike conventional approaches that prioritize pixel-wise accuracy, our method navigates the perception-distortion tradeoff through a principled combination of stochastic sampling, learned denoising, and model-based updates. The framework comprises three variants of increasing complexity, integrating theoretically grounded Langevin inference, adaptive noise schedule learning, parallel reconstruction sampling, and warm-start initialization from classical solvers. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple benchmarks, both in terms of fidelity and perceptual quality.
Related papers
- Solving Inverse Problems with FLAIR [59.02385492199431]
Flow-based latent generative models are able to generate images with remarkable quality, even enabling text-to-image generation.<n>We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems.<n>Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
arXiv Detail & Related papers (2025-06-03T09:29:47Z) - E2ED^2:Direct Mapping from Noise to Data for Enhanced Diffusion Models [15.270657838960114]
Diffusion models have established themselves as the de facto primary paradigm in visual generative modeling.<n>We present a novel end-to-end learning paradigm that establishes direct optimization from the final generated samples to initial noises.<n>Our method achieves substantial performance gains in terms of Fr'eche't Inception Distance (FID) and CLIP score, even with fewer sampling steps.
arXiv Detail & Related papers (2024-12-30T16:06:31Z) - Low-resolution Prior Equilibrium Network for CT Reconstruction [3.5639148953570836]
We present a novel deep learning-based CT reconstruction model, where the low-resolution image is introduced to obtain an effective regularization term for improving the networks robustness.
Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
arXiv Detail & Related papers (2024-01-28T13:59:58Z) - Unmasking Bias in Diffusion Model Training [40.90066994983719]
Denoising diffusion models have emerged as a dominant approach for image generation.
They still suffer from slow convergence in training and color shift issues in sampling.
In this paper, we identify that these obstacles can be largely attributed to bias and suboptimality inherent in the default training paradigm.
arXiv Detail & Related papers (2023-10-12T16:04:41Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly Detection [80.20339155618612]
DiffusionAD is a novel anomaly detection pipeline comprising a reconstruction sub-network and a segmentation sub-network.<n>A rapid one-step denoising paradigm achieves hundreds of times acceleration while preserving comparable reconstruction quality.<n>Considering the diversity in the manifestation of anomalies, we propose a norm-guided paradigm to integrate the benefits of multiple noise scales.
arXiv Detail & Related papers (2023-03-15T16:14:06Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Conditional Variational Autoencoder for Learned Image Reconstruction [5.487951901731039]
We develop a novel framework that approximates the posterior distribution of the unknown image at each query observation.
It handles implicit noise models and priors, it incorporates the data formation process (i.e., the forward operator), and the learned reconstructive properties are transferable between different datasets.
arXiv Detail & Related papers (2021-10-22T10:02:48Z) - End-to-end reconstruction meets data-driven regularization for inverse
problems [2.800608984818919]
We propose an unsupervised approach for learning end-to-end reconstruction operators for ill-posed inverse problems.
The proposed method combines the classical variational framework with iterative unrolling.
We demonstrate with the example of X-ray computed tomography (CT) that our approach outperforms state-of-the-art unsupervised methods.
arXiv Detail & Related papers (2021-06-07T12:05:06Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSF is a self-supervised framework for the joint reconstruction of 3D scene structure and motion from stereo video.
We show that the proposed model can reliably predict disparity and scene flow in challenging imagery.
It achieves better generalization than the state-of-the-art, and adapts quickly and robustly to unseen domains.
arXiv Detail & Related papers (2020-06-19T17:28:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.