Low-resolution Prior Equilibrium Network for CT Reconstruction
- URL: http://arxiv.org/abs/2401.15663v2
- Date: Thu, 18 Apr 2024 10:48:15 GMT
- Title: Low-resolution Prior Equilibrium Network for CT Reconstruction
- Authors: Yijie Yang, Qifeng Gao, Yuping Duan,
- Abstract summary: We present a novel deep learning-based CT reconstruction model, where the low-resolution image is introduced to obtain an effective regularization term for improving the networks robustness.
Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
- Score: 3.5639148953570836
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The unrolling method has been investigated for learning variational models in X-ray computed tomography. However, it has been observed that directly unrolling the regularization model through gradient descent does not produce satisfactory results. In this paper, we present a novel deep learning-based CT reconstruction model, where the low-resolution image is introduced to obtain an effective regularization term for improving the network`s robustness. Our approach involves constructing the backbone network architecture by algorithm unrolling that is realized using the deep equilibrium architecture. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium model and provide the conditions to guarantee convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
Related papers
- Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem.
The primary objective of the proposed model is to achieve a good balance between denoising and the preservation of fine details and edges.
A convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training.
arXiv Detail & Related papers (2024-04-25T08:58:41Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Model-corrected learned primal-dual models for fast limited-view
photoacoustic tomography [2.631277214890658]
Learned iterative reconstructions hold promise to accelerate tomographic imaging with empirical robustness to model perturbations.
Computational feasibility can be obtained by the use of fast approximate models, but a need to compensate model errors arises.
We advance the methodological and theoretical basis for model corrections in learned image reconstructions by embedding the model correction in a learned primal-dual framework.
arXiv Detail & Related papers (2023-04-04T17:13:22Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
The proposed algorithm is a distributed Bayesian filtering task for finite-state hidden Markov models.
It can be used for sequential state estimation, as well as for modeling opinion formation over social networks under dynamic environments.
arXiv Detail & Related papers (2022-12-05T19:40:17Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
We propose a novel deep neural network based regularizer which is trained in a generative setting on reference magnitude images only.
The results demonstrate competitive performance, on par with state-of-the-art end-to-end deep learning methods.
arXiv Detail & Related papers (2022-10-25T08:34:29Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Self-Supervised Coordinate Projection Network for Sparse-View Computed
Tomography [31.774432128324385]
We propose a Self-supervised COordinate Projection nEtwork (SCOPE) to reconstruct the artifacts-free CT image from a single SV sinogram.
Compared with recent related works that solve similar problems using implicit neural representation network (INR), our essential contribution is an effective and simple re-projection strategy.
arXiv Detail & Related papers (2022-09-12T06:14:04Z) - LRIP-Net: Low-Resolution Image Prior based Network for Limited-Angle CT
Reconstruction [5.796842150589423]
We build up a low-resolution reconstruction problem on the down-sampled projection data.
We use the reconstructed low-resolution image as prior knowledge for the original limited-angle CT problem.
arXiv Detail & Related papers (2022-07-30T13:03:20Z) - Posterior Coreset Construction with Kernelized Stein Discrepancy for
Model-Based Reinforcement Learning [78.30395044401321]
We develop a novel model-based approach to reinforcement learning (MBRL)
It relaxes the assumptions on the target transition model to belong to a generic family of mixture models.
It can achieve up-to 50 percent reduction in wall clock time in some continuous control environments.
arXiv Detail & Related papers (2022-06-02T17:27:49Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.