Hybrid Quantum-Classical Generative Adversarial Networks with Transfer Learning
- URL: http://arxiv.org/abs/2507.09706v1
- Date: Sun, 13 Jul 2025 16:46:56 GMT
- Title: Hybrid Quantum-Classical Generative Adversarial Networks with Transfer Learning
- Authors: Asma Al-Othni, Saif Al-Kuwari, Mohammad Mahdi Nasiri Fatmehsari, Kamila Zaman, Ebrahim Ardeshir Larijani,
- Abstract summary: Generative Adversarial Networks (GANs) have demonstrated immense potential in synthesizing diverse and high-fidelity images.<n>In this paper, we investigate hybrid quantum-classical GAN architectures supplemented by transfer learning.<n>Our findings indicate that fully hybrid models, which incorporate VQCs in both the generator and the discriminator, consistently produce images of higher visual quality.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have demonstrated immense potential in synthesizing diverse and high-fidelity images. However, critical questions remain unanswered regarding how quantum principles might best enhance their representational and computational capacity. In this paper, we investigate hybrid quantum-classical GAN architectures supplemented by transfer learning to systematically examine whether incorporating Variational Quantum Circuits (VQCs) into the generator, the discriminator, or both improves performance over a fully classical baseline. Our findings indicate that fully hybrid models, which incorporate VQCs in both the generator and the discriminator, consistently produce images of higher visual quality and achieve more favorable quantitative metrics compared to their fully classical counterparts. In particular, VQCs in the generator accelerate early feature learning, whereas those in the discriminator, despite exhibiting slower initial convergence, ultimately facilitate more refined synthetic outputs. Moreover, the model sustains near-comparable performance even when the dataset size is drastically reduced, suggesting that transfer learning and quantum enhancements mitigate the problem of data scarcity. Overall, the results underscore that carefully integrating quantum computing with classical adversarial training and pretrained feature extraction can considerably enrich GAN-based image synthesis. These insights open avenues for future work on higher-resolution tasks, alternative quantum circuit designs, and experimentation with emerging quantum hardware.
Related papers
- Unitary Scrambling and Collapse: A Quantum Diffusion Framework for Generative Modeling [5.258882634977828]
We propose QSC-Diffusion, the first fully quantum diffusion-based framework for image generation.<n>We employ parameterized quantum circuits with measurement-induced collapse for reverse denoising.<n>Remarkably, QSC-Diffusion achieves competitive FID scores across multiple datasets.
arXiv Detail & Related papers (2025-06-12T11:00:21Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Quantum parallel information exchange (QPIE) hybrid network with transfer learning [18.43273756128771]
Quantum machine learning (QML) has emerged as an innovative framework with the potential to uncover complex patterns.<n>We introduce quantum parallel information exchange (QPIE) hybrid network, a new non-sequential hybrid classical quantum model architecture.<n>We develop a dynamic gradient selection method that applies the parameter shift rule on quantum processing units.
arXiv Detail & Related papers (2025-04-05T17:25:26Z) - Quantum Adaptive Self-Attention for Quantum Transformer Models [0.0]
We propose Quantum Adaptive Self-Attention (QASA), a novel hybrid architecture that enhances classical Transformer models with a quantum attention mechanism.<n>QASA replaces dot-product attention with a parameterized quantum circuit (PQC) that adaptively captures inter-token relationships in the quantum Hilbert space.<n> Experiments on synthetic time-series tasks demonstrate that QASA achieves faster convergence and superior generalization compared to both standard Transformers and reduced classical variants.
arXiv Detail & Related papers (2025-04-05T02:52:37Z) - LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [7.945302052915863]
A potential application of quantum machine learning is to harness the power of quantum computers for generating classical data.
We propose LatentQGAN, a novel quantum model that uses a hybrid quantum-classical GAN coupled with an autoencoder.
arXiv Detail & Related papers (2024-09-22T23:18:06Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Variational Quantum Circuits Enhanced Generative Adversarial Network [5.209320054725053]
We propose a hybrid quantum-classical architecture for improving GAN (denoted as QC-GAN)
The QC-GAN consists of a quantum variational circuit together with a one-layer neural network, and the discriminator consists of a traditional neural network.
We have also demonstrated the superiority of QC-GAN over an alternative quantum GAN, namely pathGAN, which could hardly generate 16$times$16 or larger images.
arXiv Detail & Related papers (2024-02-02T03:59:35Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.