Discovering Governing Equations in the Presence of Uncertainty
- URL: http://arxiv.org/abs/2507.09740v1
- Date: Sun, 13 Jul 2025 18:31:25 GMT
- Title: Discovering Governing Equations in the Presence of Uncertainty
- Authors: Ridwan Olabiyi, Han Hu, Ashif Iquebal,
- Abstract summary: In this work, we theorize that accounting for system variability together with measurement noise is the key to consistently discover the governing equations underlying dynamical systems.<n>We show that SIP consistently identifies the correct equations by an average of 82% relative to the Sparse Identification Dynamics (SINDy) approach and its variant.
- Score: 11.752763800308276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the study of complex dynamical systems, understanding and accurately modeling the underlying physical processes is crucial for predicting system behavior and designing effective interventions. Yet real-world systems exhibit pronounced input (or system) variability and are observed through noisy, limited data conditions that confound traditional discovery methods that assume fixed-coefficient deterministic models. In this work, we theorize that accounting for system variability together with measurement noise is the key to consistently discover the governing equations underlying dynamical systems. As such, we introduce a stochastic inverse physics-discovery (SIP) framework that treats the unknown coefficients as random variables and infers their posterior distribution by minimizing the Kullback-Leibler divergence between the push-forward of the posterior samples and the empirical data distribution. Benchmarks on four canonical problems -- the Lotka-Volterra predator-prey system (multi- and single-trajectory), the historical Hudson Bay lynx-hare data, the chaotic Lorenz attractor, and fluid infiltration in porous media using low- and high-viscosity liquids -- show that SIP consistently identifies the correct equations and lowers coefficient root-mean-square error by an average of 82\% relative to the Sparse Identification of Nonlinear Dynamics (SINDy) approach and its Bayesian variant. The resulting posterior distributions yield 95\% credible intervals that closely track the observed trajectories, providing interpretable models with quantified uncertainty. SIP thus provides a robust, data-efficient approach for consistent physics discovery in noisy, variable, and data-limited settings.
Related papers
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Statistical Mechanics of Dynamical System Identification [2.8820361301109365]
We develop a statistical mechanics approach to analyze sparse equation discovery algorithms.<n>We provide a method for closed-loop inference, estimating the noise in a given model.<n>This perspective of sparse equation discovery is versatile and can be adapted to various other equation discovery algorithms.
arXiv Detail & Related papers (2024-03-04T04:32:28Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
This paper develops a new iterative learning algorithm for complex turbulent systems with partial observations.
It alternates between identifying model structures, recovering unobserved variables, and estimating parameters.
Numerical experiments show that the new algorithm succeeds in identifying the model structure and providing suitable parameterizations for many complex nonlinear systems.
arXiv Detail & Related papers (2022-08-19T00:35:03Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Extracting stochastic dynamical systems with $\alpha$-stable L\'evy
noise from data [14.230182518492311]
We propose a data-driven method to extract systems with $alpha$-stable L'evy noise from short burst data.
More specifically, we first estimate the L'evy jump measure and noise intensity.
Then we approximate the drift coefficient by combining nonlocal Kramers-Moyal formulas with normalizing flows.
arXiv Detail & Related papers (2021-09-30T06:57:42Z) - Extracting Governing Laws from Sample Path Data of Non-Gaussian
Stochastic Dynamical Systems [4.527698247742305]
We infer equations with non-Gaussian L'evy noise from available data to reasonably predict dynamical behaviors.
We establish a theoretical framework and design a numerical algorithm to compute the asymmetric L'evy jump measure, drift and diffusion.
This method will become an effective tool in discovering the governing laws from available data sets and in understanding the mechanisms underlying complex random phenomena.
arXiv Detail & Related papers (2021-07-21T14:50:36Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
We develop a new data-driven approach to extract governing laws from noisy data sets.
First, we establish a feasible theoretical framework, by expressing the drift coefficient, diffusion coefficient and jump measure.
We then design a numerical algorithm to compute the drift, diffusion coefficient and jump measure, and thus extract a governing equation with Gaussian and non-Gaussian noise.
arXiv Detail & Related papers (2020-05-07T21:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.