BrainFLORA: Uncovering Brain Concept Representation via Multimodal Neural Embeddings
- URL: http://arxiv.org/abs/2507.09747v1
- Date: Sun, 13 Jul 2025 18:56:17 GMT
- Title: BrainFLORA: Uncovering Brain Concept Representation via Multimodal Neural Embeddings
- Authors: Dongyang Li, Haoyang Qin, Mingyang Wu, Chen Wei, Quanying Liu,
- Abstract summary: We introduce BrainFLORA, a unified framework for integrating cross-modal neuroimaging data to construct a shared neural representation.<n>Our approach leverages multimodal large language models (MLLMs) augmented with modality-specific adapters and task decoders, achieving state-of-the-art performance in joint-subject visual retrieval.<n>BrainFLORA offers novel implications for cognitive neuroscience and brain-computer interfaces (BCIs)
- Score: 10.966252877363512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how the brain represents visual information is a fundamental challenge in neuroscience and artificial intelligence. While AI-driven decoding of neural data has provided insights into the human visual system, integrating multimodal neuroimaging signals, such as EEG, MEG, and fMRI, remains a critical hurdle due to their inherent spatiotemporal misalignment. Current approaches often analyze these modalities in isolation, limiting a holistic view of neural representation. In this study, we introduce BrainFLORA, a unified framework for integrating cross-modal neuroimaging data to construct a shared neural representation. Our approach leverages multimodal large language models (MLLMs) augmented with modality-specific adapters and task decoders, achieving state-of-the-art performance in joint-subject visual retrieval task and has the potential to extend multitasking. Combining neuroimaging analysis methods, we further reveal how visual concept representations align across neural modalities and with real world object perception. We demonstrate that the brain's structured visual concept representations exhibit an implicit mapping to physical-world stimuli, bridging neuroscience and machine learning from different modalities of neural imaging. Beyond methodological advancements, BrainFLORA offers novel implications for cognitive neuroscience and brain-computer interfaces (BCIs). Our code is available at https://github.com/ncclab-sustech/BrainFLORA.
Related papers
- Neural Brain: A Neuroscience-inspired Framework for Embodied Agents [58.58177409853298]
Current AI systems, such as large language models, remain disembodied, unable to physically engage with the world.<n>At the core of this challenge lies the concept of Neural Brain, a central intelligence system designed to drive embodied agents with human-like adaptability.<n>This paper introduces a unified framework for the Neural Brain of embodied agents, addressing two fundamental challenges.
arXiv Detail & Related papers (2025-05-12T15:05:34Z) - MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data [64.92867794764247]
MindAligner is a framework for cross-subject brain decoding from limited fMRI data.<n>Brain Transfer Matrix (BTM) projects the brain signals of an arbitrary new subject to one of the known subjects.<n>Brain Functional Alignment module is proposed to perform soft cross-subject brain alignment under different visual stimuli.
arXiv Detail & Related papers (2025-02-07T16:01:59Z) - BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
We introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks.<n>Our framework enables explanatory analyses of crucial brain regions involved in tasks.
arXiv Detail & Related papers (2024-12-23T09:13:35Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - MindSemantix: Deciphering Brain Visual Experiences with a Brain-Language Model [45.18716166499859]
Deciphering the human visual experience through brain activities captured by fMRI represents a compelling and cutting-edge challenge.
We introduce MindSemantix, a novel multi-modal framework that enables LLMs to comprehend visually-evoked semantic content in brain activity.
MindSemantix generates high-quality captions that are deeply rooted in the visual and semantic information derived from brain activity.
arXiv Detail & Related papers (2024-05-29T06:55:03Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.<n>We show that our model captures the distinct functionalities of each region of human vision system.<n>Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - Neuro-Vision to Language: Enhancing Brain Recording-based Visual Reconstruction and Language Interaction [8.63068449082585]
Decoding non-invasive brain recordings is pivotal for advancing our understanding of human cognition.
Our framework integrates 3D brain structures with visual semantics using a Vision Transformer 3D.
We have enhanced the fMRI dataset with diverse fMRI-image-related textual data to support multimodal large model development.
arXiv Detail & Related papers (2024-04-30T10:41:23Z) - Achieving More Human Brain-Like Vision via Human EEG Representational Alignment [1.811217832697894]
We present 'Re(presentational)Al(ignment)net', a vision model aligned with human brain activity based on non-invasive EEG.
Our innovative image-to-brain multi-layer encoding framework advances human neural alignment by optimizing multiple model layers.
Our findings suggest that ReAlnet represents a breakthrough in bridging the gap between artificial and human vision, and paving the way for more brain-like artificial intelligence systems.
arXiv Detail & Related papers (2024-01-30T18:18:41Z) - Brainformer: Mimic Human Visual Brain Functions to Machine Vision Models via fMRI [12.203617776046169]
We introduce a novel framework named Brainformer to analyze fMRI patterns in the human perception system.<n>This work introduces a prospective approach to transferring knowledge from human perception to neural networks.
arXiv Detail & Related papers (2023-11-30T22:39:23Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
Existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability.
We propose a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities.
We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200.
arXiv Detail & Related papers (2022-10-08T12:14:33Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
We present a newly-designed multimodal foundation model pre-trained on 15 million image-text pairs.
We find that both visual and lingual encoders trained multimodally are more brain-like compared with unimodal ones.
arXiv Detail & Related papers (2022-08-17T12:36:26Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.