Secure and Efficient UAV-Based Face Detection via Homomorphic Encryption and Edge Computing
- URL: http://arxiv.org/abs/2507.09860v1
- Date: Mon, 14 Jul 2025 02:07:08 GMT
- Title: Secure and Efficient UAV-Based Face Detection via Homomorphic Encryption and Edge Computing
- Authors: Nguyen Van Duc, Bui Duc Manh, Quang-Trung Luu, Dinh Thai Hoang, Van-Linh Nguyen, Diep N. Nguyen,
- Abstract summary: High-resolution imagery and sophisticated neural networks enable accurate face recognition in dynamic environments.<n>Privacy concerns arise from the extensive surveillance capabilities of UAVs.<n>We propose a novel framework that integrates HE with advanced neural networks to secure facial data.
- Score: 19.8178193448669
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to propose a novel machine learning (ML) approach incorporating Homomorphic Encryption (HE) to address privacy limitations in Unmanned Aerial Vehicles (UAV)-based face detection. Due to challenges related to distance, altitude, and face orientation, high-resolution imagery and sophisticated neural networks enable accurate face recognition in dynamic environments. However, privacy concerns arise from the extensive surveillance capabilities of UAVs. To resolve this issue, we propose a novel framework that integrates HE with advanced neural networks to secure facial data throughout the inference phase. This method ensures that facial data remains secure with minimal impact on detection accuracy. Specifically, the proposed system leverages the Cheon-Kim-Kim-Song (CKKS) scheme to perform computations directly on encrypted data, optimizing computational efficiency and security. Furthermore, we develop an effective data encoding method specifically designed to preprocess the raw facial data into CKKS form in a Single-Instruction-Multiple-Data (SIMD) manner. Building on this, we design a secure inference algorithm to compute on ciphertext without needing decryption. This approach not only protects data privacy during the processing of facial data but also enhances the efficiency of UAV-based face detection systems. Experimental results demonstrate that our method effectively balances privacy protection and detection performance, making it a viable solution for UAV-based secure face detection. Significantly, our approach (while maintaining data confidentially with HE encryption) can still achieve an accuracy of less than 1% compared to the benchmark without using encryption.
Related papers
- Pura: An Efficient Privacy-Preserving Solution for Face Recognition [21.52988320674215]
We propose an efficient privacy-preserving solution for face recognition, named Pura.<n>Pura safeguards personal facial privacy and supports face recognition over encrypted data efficiently.<n>Pura achieves recognition speeds up to 16 times faster than the state-of-the-art.
arXiv Detail & Related papers (2025-05-21T12:50:25Z) - Enhancing Privacy in Semantic Communication over Wiretap Channels leveraging Differential Privacy [51.028047763426265]
Semantic communication (SemCom) improves transmission efficiency by focusing on task-relevant information.<n> transmitting semantic-rich data over insecure channels introduces privacy risks.<n>This paper proposes a novel SemCom framework that integrates differential privacy mechanisms to protect sensitive semantic features.
arXiv Detail & Related papers (2025-04-23T08:42:44Z) - CipherFace: A Fully Homomorphic Encryption-Driven Framework for Secure Cloud-Based Facial Recognition [0.0]
This paper introduces CipherFace, a homomorphic encryption-driven framework for secure cloud-based facial recognition.<n>By leveraging FHE, CipherFace ensures the privacy of embeddings while utilizing the cloud for efficient distance computation.<n>We propose a novel encrypted distance computation method for both Euclidean and Cosine, addressing key challenges in performing secure similarity calculations on encrypted data.
arXiv Detail & Related papers (2025-02-22T19:03:04Z) - Privacy-Preserving Hybrid Ensemble Model for Network Anomaly Detection: Balancing Security and Data Protection [6.5920909061458355]
We propose a hybrid ensemble model that incorporates privacy-preserving techniques to address both detection accuracy and data protection.<n>Our model combines the strengths of several machine learning algo- rithms, including K-Nearest Neighbors (KNN), Support Vector Machines (SVM), XGBoost, and Artificial Neural Networks (ANN)
arXiv Detail & Related papers (2025-02-13T06:33:16Z) - Technical Report for the Forgotten-by-Design Project: Targeted Obfuscation for Machine Learning [0.03749861135832072]
This paper explores the concept of the Right to be Forgotten (RTBF) within AI systems, contrasting it with traditional data erasure methods.<n>We introduce Forgotten by Design, a proactive approach to privacy preservation that integrates instance-specific obfuscation techniques.<n>Our experiments on the CIFAR-10 dataset demonstrate that our techniques reduce privacy risks by at least an order of magnitude while maintaining model accuracy.
arXiv Detail & Related papers (2025-01-20T15:07:59Z) - Privacy-Preserving Cyberattack Detection in Blockchain-Based IoT Systems Using AI and Homomorphic Encryption [22.82443900809095]
This work proposes a privacy-preserving cyberattack detection framework for blockchain-based Internet-of-Things (IoT) systems.<n>In our approach, artificial intelligence (AI)-driven detection modules are strategically deployed at blockchain nodes to identify real-time attacks.<n>To safeguard privacy, the data is encrypted using homomorphic encryption (HE) before transmission.<n>Our simulation results demonstrate that our proposed method can not only mitigate the training time but also achieve detection accuracy that is approximately identical to the approach without encryption, with a gap of around 0.01%.
arXiv Detail & Related papers (2024-12-18T05:46:53Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
We propose a hardware-level face de-identification method to solve this vulnerability.
We also propose an anonymization framework that generates a new face using the privacy-preserving image, face heatmap, and a reference face image from a public dataset as input.
arXiv Detail & Related papers (2024-03-31T19:28:04Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
In this paper, we propose a novel face privacy protection method based on diffusion models, dubbed Diff-Privacy.
Specifically, we train our proposed multi-scale image inversion module (MSI) to obtain a set of SDM format conditional embeddings of the original image.
Based on the conditional embeddings, we design corresponding embedding scheduling strategies and construct different energy functions during the denoising process to achieve anonymization and visual identity information hiding.
arXiv Detail & Related papers (2023-09-11T09:26:07Z) - Hiding Visual Information via Obfuscating Adversarial Perturbations [47.315523613407244]
We propose an adversarial visual information hiding method to protect the visual privacy of data.
Specifically, the method generates obfuscating adversarial perturbations to obscure the visual information of the data.
Experimental results on the recognition and classification tasks demonstrate that the proposed method can effectively hide visual information.
arXiv Detail & Related papers (2022-09-30T08:23:26Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
Face anti-spoofing is the key to preventing security breaches in biometric recognition applications.
Deep learning method using RGB and infrared images demands a large amount of training data for new attacks.
We present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face.
arXiv Detail & Related papers (2020-03-18T03:04:03Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
We propose a targeted identity-protection iterative method (TIP-IM) to generate adversarial identity masks.
TIP-IM provides 95%+ protection success rate against various state-of-the-art face recognition models.
arXiv Detail & Related papers (2020-03-15T12:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.