Aligning Generative Speech Enhancement with Human Preferences via Direct Preference Optimization
- URL: http://arxiv.org/abs/2507.09929v1
- Date: Mon, 14 Jul 2025 05:15:39 GMT
- Title: Aligning Generative Speech Enhancement with Human Preferences via Direct Preference Optimization
- Authors: Haoyang Li, Nana Hou, Yuchen Hu, Jixun Yao, Sabato Marco Siniscalchi, Eng Siong Chng,
- Abstract summary: This work investigates speech enhancement from the perspective of language models (LMs)<n>Using UTMOS, a neural MOS prediction model, as a proxy for human ratings, our approach guides optimization toward perceptually preferred outputs.<n>Experiments on the 2020 Deep Noise Suppression Challenge test sets demonstrate that applying DPO to a pretrained LM-based SE model yields consistent improvements.
- Score: 46.94426003410216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work investigates speech enhancement (SE) from the perspective of language models (LMs). We propose a novel method that leverages Direct Preference Optimization (DPO) to improve the perceptual quality of enhanced speech. Using UTMOS, a neural MOS prediction model, as a proxy for human ratings, our approach guides optimization toward perceptually preferred outputs. This differs from existing LM-based SE methods that focus on maximizing the likelihood of clean speech tokens, which may misalign with human perception and degrade quality despite low prediction error. Experiments on the 2020 Deep Noise Suppression Challenge test sets demonstrate that applying DPO to a pretrained LM-based SE model yields consistent improvements across various speech quality metrics, with relative gains of up to 56%. To our knowledge, this is the first application of DPO to SE and the first to incorporate proxy perceptual feedback into LM-based SE training, pointing to a promising direction for perceptually aligned SE.
Related papers
- ASPO: Adaptive Sentence-Level Preference Optimization for Fine-Grained Multimodal Reasoning [14.034412856423529]
Direct Preference Optimization (DPO) has gained attention for its simplicity and computational efficiency in aligning large language models (LLMs)<n>Recent advancements have extended DPO to multimodal scenarios, achieving strong performance.<n>Traditional DPO relies on binary preference optimization, rewarding or penalizing entire responses without considering fine-grained segment correctness.<n>We propose Adaptive Sentence-level Preference Optimization (ASPO), which evaluates individual sentences for more precise preference optimization.
arXiv Detail & Related papers (2025-05-25T11:33:08Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Active Learning for Direct Preference Optimization [59.84525302418018]
Direct preference optimization (DPO) is a form of reinforcement learning from human feedback.<n>We propose an active learning framework for DPO, which can be applied to collect human feedback online or to choose the most informative subset of already collected feedback offline.
arXiv Detail & Related papers (2025-03-03T00:36:31Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.<n>Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.<n> Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Understanding Likelihood Over-optimisation in Direct Alignment Algorithms [20.043560907227018]
Direct Alignment Algorithms (DAAs) have emerged as alternatives to online Reinforcement Learning from Human Feedback.
These algorithms aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones.
This work explores the relationship between completion likelihood and model performance in state-of-the-art DAAs.
arXiv Detail & Related papers (2024-10-15T15:14:22Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
preference alignment algorithms adjust LMs to align with the preferences of reward models, enhancing the desirability of the generated content.
With a 1.15B parameter LM-based TTS model, we demonstrate that preference alignment consistently improves intelligibility, speaker similarity, and proxy subjective evaluation scores.
arXiv Detail & Related papers (2024-09-19T01:58:19Z) - Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF [82.7679132059169]
Reinforcement learning from human feedback has emerged as a central tool for language model alignment.
We propose a new algorithm for online exploration in RLHF, Exploratory Preference Optimization (XPO)
XPO enjoys the strongest known provable guarantees and promising empirical performance.
arXiv Detail & Related papers (2024-05-31T17:39:06Z) - Self-Play Preference Optimization for Language Model Alignment [75.83359213697854]
Recent advancements suggest that directly working with preference probabilities can yield a more accurate reflection of human preferences.
We propose a self-play-based method for language model alignment, which treats the problem as a constant-sum two-player game.
Our approach, dubbed Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to provably approximate the Nash equilibrium.
arXiv Detail & Related papers (2024-05-01T17:59:20Z) - Adversarial Preference Optimization: Enhancing Your Alignment via RM-LLM Game [31.66896160733569]
We propose an Adversarial Preference Optimization (APO) framework to target more efficient human preference optimization.
We find the proposed adversarial training framework further enhances existing alignment baselines in terms of LLM helpfulness and harmlessness.
arXiv Detail & Related papers (2023-11-14T10:10:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.