Hierarchical Job Classification with Similarity Graph Integration
- URL: http://arxiv.org/abs/2507.09949v1
- Date: Mon, 14 Jul 2025 05:54:57 GMT
- Title: Hierarchical Job Classification with Similarity Graph Integration
- Authors: Md Ahsanul Kabir, Kareem Abdelfatah, Mohammed Korayem, Mohammad Al Hasan,
- Abstract summary: Traditional text classification methods often fall short due to their inability to fully utilize the hierarchical nature of industry categories.<n>We propose a novel representation learning and classification model that embeds jobs and hierarchical industry categories into a latent embedding space.<n>Our model integrates the Standard Occupational Classification (SOC) system and an in-house hierarchical taxonomy, Carotene, to capture both graph and hierarchical relationships.
- Score: 5.432179788898068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the dynamic realm of online recruitment, accurate job classification is paramount for optimizing job recommendation systems, search rankings, and labor market analyses. As job markets evolve, the increasing complexity of job titles and descriptions necessitates sophisticated models that can effectively leverage intricate relationships within job data. Traditional text classification methods often fall short, particularly due to their inability to fully utilize the hierarchical nature of industry categories. To address these limitations, we propose a novel representation learning and classification model that embeds jobs and hierarchical industry categories into a latent embedding space. Our model integrates the Standard Occupational Classification (SOC) system and an in-house hierarchical taxonomy, Carotene, to capture both graph and hierarchical relationships, thereby improving classification accuracy. By embedding hierarchical industry categories into a shared latent space, we tackle cold start issues and enhance the dynamic matching of candidates to job opportunities. Extensive experimentation on a large-scale dataset of job postings demonstrates the model's superior ability to leverage hierarchical structures and rich semantic features, significantly outperforming existing methods. This research provides a robust framework for improving job classification accuracy, supporting more informed decision-making in the recruitment industry.
Related papers
- Enforcing Consistency and Fairness in Multi-level Hierarchical Classification with a Mask-based Output Layer [25.819440955594736]
We introduce a fair, model-agnostic layer designed to enforce taxonomy and optimize objectives, including consistency, fairness, and exact match.<n>Our evaluations demonstrate that the proposed layer not only improves the fairness of predictions but also enforces the taxonomy, resulting in consistent predictions and superior performance.
arXiv Detail & Related papers (2025-03-19T06:30:04Z) - A Multi-Stage Framework with Taxonomy-Guided Reasoning for Occupation Classification Using Large Language Models [13.350477885980512]
Large language models (LLMs) hold promise due to their extensive world knowledge and in-context learning capabilities.<n>We propose a multi-stage framework consisting of inference, retrieval, and reranking stages.<n>Our results indicate that the framework outperforms existing LLM-based methods.
arXiv Detail & Related papers (2025-03-17T09:44:50Z) - Can Large Language Models Serve as Effective Classifiers for Hierarchical Multi-Label Classification of Scientific Documents at Industrial Scale? [1.0562108865927007]
Large Language Models (LLMs) have demonstrated great potential in complex tasks such as multi-label classification.<n>We present methods that combine the strengths of LLMs with dense retrieval techniques to overcome these challenges.<n>We evaluate the effectiveness of our methods on SSRN, a large repository of preprints spanning multiple disciplines.
arXiv Detail & Related papers (2024-12-06T15:51:22Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Hierarchical Query Classification in E-commerce Search [38.67034103433015]
E-commerce platforms typically store and structure product information and search data in a hierarchy.
Efficiently categorizing user search queries into a similar hierarchical structure is paramount in enhancing user experience on e-commerce platforms as well as news curation and academic research.
The inherent complexity of hierarchical query classification is compounded by two primary challenges: (1) the pronounced class imbalance that skews towards dominant categories, and (2) the inherent brevity and ambiguity of search queries that hinder accurate classification.
arXiv Detail & Related papers (2024-03-09T21:55:55Z) - Hierarchical Classification of Transversal Skills in Job Ads Based on
Sentence Embeddings [0.0]
This paper aims to identify correlations between job ad requirements and skill sets using a deep learning model.
The approach involves data collection, preprocessing, and labeling using ESCO (European Skills, Competences, and Occupations) taxonomy.
arXiv Detail & Related papers (2024-01-10T11:07:32Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
This study aims to analyze various hierarchical and incremental clustering techniques.
The main contribution of this research is the organization and comparison of the techniques used by studies published between 2010 and 2018 that aimed to texts documents clustering.
arXiv Detail & Related papers (2023-12-12T22:27:29Z) - Association Graph Learning for Multi-Task Classification with Category
Shifts [68.58829338426712]
We focus on multi-task classification, where related classification tasks share the same label space and are learned simultaneously.
We learn an association graph to transfer knowledge among tasks for missing classes.
Our method consistently performs better than representative baselines.
arXiv Detail & Related papers (2022-10-10T12:37:41Z) - Weakly-supervised Action Localization via Hierarchical Mining [76.00021423700497]
Weakly-supervised action localization aims to localize and classify action instances in the given videos temporally with only video-level categorical labels.
We propose a hierarchical mining strategy under video-level and snippet-level manners, i.e., hierarchical supervision and hierarchical consistency mining.
We show that HiM-Net outperforms existing methods on THUMOS14 and ActivityNet1.3 datasets with large margins by hierarchically mining the supervision and consistency.
arXiv Detail & Related papers (2022-06-22T12:19:09Z) - Hierarchical Modeling for Out-of-Scope Domain and Intent Classification [55.23920796595698]
This paper focuses on out-of-scope intent classification in dialog systems.
We propose a hierarchical multi-task learning approach based on a joint model to classify domain and intent simultaneously.
Experiments show that the model outperforms existing methods in terms of accuracy, out-of-scope recall and F1.
arXiv Detail & Related papers (2021-04-30T06:38:23Z) - Inducing a hierarchy for multi-class classification problems [11.58041597483471]
In applications where categorical labels follow a natural hierarchy, classification methods that exploit the label structure often outperform those that do not.
In this paper, we investigate a class of methods that induce a hierarchy that can similarly improve classification performance over flat classifiers.
We demonstrate the effectiveness of the class of methods both for discovering a latent hierarchy and for improving accuracy in principled simulation settings and three real data applications.
arXiv Detail & Related papers (2021-02-20T05:40:42Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.