Memory-Efficient Personalization of Text-to-Image Diffusion Models via Selective Optimization Strategies
- URL: http://arxiv.org/abs/2507.10029v1
- Date: Mon, 14 Jul 2025 08:08:55 GMT
- Title: Memory-Efficient Personalization of Text-to-Image Diffusion Models via Selective Optimization Strategies
- Authors: Seokeon Choi, Sunghyun Park, Hyoungwoo Park, Jeongho Kim, Sungrack Yun,
- Abstract summary: We propose a selective optimization framework that adaptively chooses between backpropagation on low-resolution images (BP-low) and zeroth-order optimization on high-resolution images (ZO-high)<n>Our method achieves competitive performance while significantly reducing memory consumption, enabling scalable, high-quality on-device personalization without increasing latency inference.
- Score: 18.692036523182594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Memory-efficient personalization is critical for adapting text-to-image diffusion models while preserving user privacy and operating within the limited computational resources of edge devices. To this end, we propose a selective optimization framework that adaptively chooses between backpropagation on low-resolution images (BP-low) and zeroth-order optimization on high-resolution images (ZO-high), guided by the characteristics of the diffusion process. As observed in our experiments, BP-low efficiently adapts the model to target-specific features, but suffers from structural distortions due to resolution mismatch. Conversely, ZO-high refines high-resolution details with minimal memory overhead but faces slow convergence when applied without prior adaptation. By complementing both methods, our framework leverages BP-low for effective personalization while using ZO-high to maintain structural consistency, achieving memory-efficient and high-quality fine-tuning. To maximize the efficacy of both BP-low and ZO-high, we introduce a timestep-aware probabilistic function that dynamically selects the appropriate optimization strategy based on diffusion timesteps. This function mitigates the overfitting from BP-low at high timesteps, where structural information is critical, while ensuring ZO-high is applied more effectively as training progresses. Experimental results demonstrate that our method achieves competitive performance while significantly reducing memory consumption, enabling scalable, high-quality on-device personalization without increasing inference latency.
Related papers
- Online Decision-Focused Learning [63.83903681295497]
Decision-focused learning (DFL) is an increasingly popular paradigm for training predictive models whose outputs are used in decision-making tasks.<n>We investigate DFL in dynamic environments where the objective function does not evolve over time.<n>We establish bounds on the expected dynamic regret, both when decision space is a simplex and when it is a general bounded convex polytope.
arXiv Detail & Related papers (2025-05-19T10:40:30Z) - SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity [30.260783715373382]
Test-time adaptation (TTA) has emerged to improve the performance of deep models by adapting them to unlabeled target data online.<n>Yet, the significant memory cost, particularly in resource-constrained terminals, impedes the effective deployment of most backward-propagation-based TTA methods.<n>To tackle memory constraints, we introduce SURGEON, a method that substantially reduces memory cost while preserving comparable accuracy improvements.
arXiv Detail & Related papers (2025-03-26T09:27:09Z) - A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning [61.403275660120606]
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives.<n>We propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method.<n>Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
arXiv Detail & Related papers (2025-03-02T13:43:53Z) - Striving for Faster and Better: A One-Layer Architecture with Auto Re-parameterization for Low-Light Image Enhancement [50.93686436282772]
We aim to delve into the limits of image enhancers both from visual quality and computational efficiency.<n>By rethinking the task demands, we build an explicit connection, i.e., visual quality and computational efficiency are corresponding to model learning and structure design.<n>Ultimately, this achieves efficient low-light image enhancement using only a single convolutional layer, while maintaining excellent visual quality.
arXiv Detail & Related papers (2025-02-27T08:20:03Z) - COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs [81.01082659623552]
Large Language Models (LLMs) have demonstrated remarkable success across various domains.<n>Their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit.
arXiv Detail & Related papers (2025-02-24T18:42:19Z) - DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction [57.83978915843095]
This paper introduces DiSK, a novel framework designed to significantly enhance the performance of differentially private gradients.<n>To ensure practicality for large-scale training, we simplify the Kalman filtering process, minimizing its memory and computational demands.
arXiv Detail & Related papers (2024-10-04T19:30:39Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)<n>Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.<n>We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - Memory-Efficient Optimization with Factorized Hamiltonian Descent [11.01832755213396]
We introduce a novel adaptive, H-Fac, which incorporates a memory-efficient factorization approach to address this challenge.
By employing a rank-1 parameterization for both momentum and scaling parameter estimators, H-Fac reduces memory costs to a sublinear level.
We develop our algorithms based on principles derived from Hamiltonian dynamics, providing robust theoretical underpinnings in optimization dynamics and convergence guarantees.
arXiv Detail & Related papers (2024-06-14T12:05:17Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
We introduce low-memory optimization with adaptive learning rate (AdaLomo) for large language models.
AdaLomo results on par with AdamW, while significantly reducing memory requirements, thereby lowering the hardware barrier to training large language models.
arXiv Detail & Related papers (2023-10-16T09:04:28Z) - CAME: Confidence-guided Adaptive Memory Efficient Optimization [20.009302737137787]
Adaptive gradient methods have demonstrated excellent performance in the training of large language models.
The need for maintaining second-moment estimates requires maintaining a high cost of extra memory overheads.
Several memory-efficients have been proposed to obtain a drastic reduction in auxiliary memory usage, but with a performance penalty.
We propose CAME to simultaneously achieve two goals: fast convergence as in traditional adaptive methods, and low memory usage as in memory-efficient methods.
arXiv Detail & Related papers (2023-07-05T06:05:36Z) - ESTISR: Adapting Efficient Scene Text Image Super-resolution for
Real-Scenes [25.04435367653037]
Scene text image super-resolution (STISR) has yielded remarkable improvements in accurately recognizing scene text.
We propose a novel Efficient Scene Text Image Super-resolution (ESTISR) Network for resource-limited deployment platform.
ESTISR consistently outperforms current methods in terms of actual running time and peak memory consumption.
arXiv Detail & Related papers (2023-06-04T19:14:44Z) - Pre-trained Gaussian Processes for Bayesian Optimization [24.730678780782647]
We propose a new pre-training based BO framework named HyperBO.
We show bounded posterior predictions and near-zero regrets for HyperBO without assuming the "ground truth" GP prior is known.
arXiv Detail & Related papers (2021-09-16T20:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.