MoVieS: Motion-Aware 4D Dynamic View Synthesis in One Second
- URL: http://arxiv.org/abs/2507.10065v1
- Date: Mon, 14 Jul 2025 08:49:57 GMT
- Title: MoVieS: Motion-Aware 4D Dynamic View Synthesis in One Second
- Authors: Chenguo Lin, Yuchen Lin, Panwang Pan, Yifan Yu, Honglei Yan, Katerina Fragkiadaki, Yadong Mu,
- Abstract summary: MoVieS represents dynamic 3D scenes using pixel-aligned grids of Gaussian primitives.<n>MoVieS enables view synthesis, reconstruction and 3D point tracking within a single learning-based framework.
- Score: 29.926373004694728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present MoVieS, a novel feed-forward model that synthesizes 4D dynamic novel views from monocular videos in one second. MoVieS represents dynamic 3D scenes using pixel-aligned grids of Gaussian primitives, explicitly supervising their time-varying motion. This allows, for the first time, the unified modeling of appearance, geometry and motion, and enables view synthesis, reconstruction and 3D point tracking within a single learning-based framework. By bridging novel view synthesis with dynamic geometry reconstruction, MoVieS enables large-scale training on diverse datasets with minimal dependence on task-specific supervision. As a result, it also naturally supports a wide range of zero-shot applications, such as scene flow estimation and moving object segmentation. Extensive experiments validate the effectiveness and efficiency of MoVieS across multiple tasks, achieving competitive performance while offering several orders of magnitude speedups.
Related papers
- DGS-LRM: Real-Time Deformable 3D Gaussian Reconstruction From Monocular Videos [52.46386528202226]
We introduce the Deformable Gaussian Splats Large Reconstruction Model (DGS-LRM)<n>It is the first feed-forward method predicting deformable 3D Gaussian splats from a monocular posed video of any dynamic scene.<n>It achieves performance on par with state-of-the-art monocular video 3D tracking methods.
arXiv Detail & Related papers (2025-06-11T17:59:58Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.<n>By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.<n>We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Shape of Motion: 4D Reconstruction from a Single Video [51.04575075620677]
We introduce a method capable of reconstructing generic dynamic scenes, featuring explicit, full-sequence-long 3D motion.
We exploit the low-dimensional structure of 3D motion by representing scene motion with a compact set of SE3 motion bases.
Our method achieves state-of-the-art performance for both long-range 3D/2D motion estimation and novel view synthesis on dynamic scenes.
arXiv Detail & Related papers (2024-07-18T17:59:08Z) - NVFi: Neural Velocity Fields for 3D Physics Learning from Dynamic Videos [8.559809421797784]
We propose to simultaneously learn the geometry, appearance, and physical velocity of 3D scenes only from video frames.
We conduct extensive experiments on multiple datasets, demonstrating the superior performance of our method over all baselines.
arXiv Detail & Related papers (2023-12-11T14:07:31Z) - Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis [58.5779956899918]
We present a method that simultaneously addresses the tasks of dynamic scene novel-view synthesis and six degree-of-freedom (6-DOF) tracking of all dense scene elements.
We follow an analysis-by-synthesis framework, inspired by recent work that models scenes as a collection of 3D Gaussians.
We demonstrate a large number of downstream applications enabled by our representation, including first-person view synthesis, dynamic compositional scene synthesis, and 4D video editing.
arXiv Detail & Related papers (2023-08-18T17:59:21Z) - Decoupling Dynamic Monocular Videos for Dynamic View Synthesis [50.93409250217699]
We tackle the challenge of dynamic view synthesis from dynamic monocular videos in an unsupervised fashion.
Specifically, we decouple the motion of the dynamic objects into object motion and camera motion, respectively regularized by proposed unsupervised surface consistency and patch-based multi-view constraints.
arXiv Detail & Related papers (2023-04-04T11:25:44Z) - Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [70.76742458931935]
We introduce a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion.
Our representation is optimized through a neural network to fit the observed input views.
We show that our representation can be used for complex dynamic scenes, including thin structures, view-dependent effects, and natural degrees of motion.
arXiv Detail & Related papers (2020-11-26T01:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.