論文の概要: Analysis of AI Techniques for Orchestrating Edge-Cloud Application Migration
- arxiv url: http://arxiv.org/abs/2507.10119v1
- Date: Mon, 14 Jul 2025 10:03:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:24.662194
- Title: Analysis of AI Techniques for Orchestrating Edge-Cloud Application Migration
- Title(参考訳): エッジクラウドアプリケーションのマイグレーションをオーケストレーションするAI技術の解析
- Authors: Sadig Gojayev, Ahmad Anaqreh, Carolina Fortuna,
- Abstract要約: 我々は、エッジクラウドアプリケーションのマイグレーション問題のクラスを解決するために、AI(Artificial-of-the-art Artificial Intelligence)計画と強化学習(Reinforcement Learning、RL)アプローチを選択し、分析し、比較する。
目的は、新興コンピューティング環境におけるそのようなアプリケーションのマイグレーションを組織化できる技術を理解することである。
- 参考スコア(独自算出の注目度): 0.196629787330046
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Application migration in edge-cloud system enables high QoS and cost effective service delivery. However, automatically orchestrating such migration is typically solved with heuristic approaches. Starting from the Markov Decision Process (MDP), in this paper, we identify, analyze and compare selected state-of-the-art Artificial Intelligence (AI) planning and Reinforcement Learning (RL) approaches for solving the class of edge-cloud application migration problems that can be modeled as Towers of Hanoi (ToH) problems. We introduce a new classification based on state space definition and analyze the compared models also through this lense. The aim is to understand available techniques capable of orchestrating such application migration in emerging computing continuum environments.
- Abstract(参考訳): エッジクラウドシステムのアプリケーションマイグレーションは、高いQoSとコスト効率のよいサービスデリバリを可能にします。
しかし、そのような移行を自動的に編成することは、一般的にヒューリスティックなアプローチで解決される。
本稿では、マルコフ決定プロセス(MDP)から、ハノイ塔(ToH)問題としてモデル化可能なエッジクラウドアプリケーションマイグレーション問題のクラスを解決するための、AI(Artificial-of-the-the-art Artificial Intelligence)計画と強化学習(Reinforcement Learning、RL)アプローチの選択、分析、比較を行う。
状態空間の定義に基づく新しい分類を導入し、このレンズを通して比較したモデルも分析する。
目指すのは、新興コンピューティング環境におけるそのようなアプリケーション移行を組織化できる技術を理解することである。
関連論文リスト
- Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujicaは、質問をサブクエストの非循環グラフに分解するプランナーであり、検索と推論を通じて質問を解決するワーカーである。
MyGOは、従来のポリシー更新を勾配的いいねりの最大推定に置き換える、新しい強化学習手法である。
複数のデータセットにまたがる実験結果から,マルチホップQA性能向上における MujicaMyGO の有効性が示された。
論文 参考訳(メタデータ) (2025-05-20T18:33:03Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
エッジクラウドコラボレーティブコンピューティング(ECCC)は、現代のインテリジェントアプリケーションの計算要求に対処するための重要なパラダイムとして登場した。
AIの最近の進歩、特にディープラーニングと大規模言語モデル(LLM)は、これらの分散システムの能力を劇的に向上させてきた。
この調査は、基本的なアーキテクチャ、技術の実現、新しいアプリケーションに関する構造化されたチュートリアルを提供する。
論文 参考訳(メタデータ) (2025-05-03T13:55:38Z) - An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization [0.0]
我々は、この継続的な発展途上の分野における芸術の状況について概観する。
AutoMLは、高度な分析を適用することに興味があるドメイン科学者が機械学習技術にアクセスできるようにする。
論文 参考訳(メタデータ) (2025-04-08T16:51:22Z) - AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
我々は情報時代(AoI)の新たな定義を提案し、再定義されたAoIに基づいて、MECシステムにおけるオンラインAoI問題を定式化する。
本稿では,システム力学の部分的知識を活用するために,PDS(Post-Decision State)を導入する。
また、PSDと深いRLを組み合わせることで、アルゴリズムの適用性、スケーラビリティ、堅牢性をさらに向上します。
論文 参考訳(メタデータ) (2023-12-01T01:30:49Z) - CSM-H-R: A Context Modeling Framework in Supporting Reasoning Automation for Interoperable Intelligent Systems and Privacy Protection [0.07499722271664144]
本稿では,大規模システムにおけるハイレベルコンテキスト推論(HLC)の自動化のための新しいフレームワークを提案する。
フレームワークの設計は、インテリジェントシステムとCSMを扱うコンポーネント間の共有と相互コンテキスト、階層、関係、遷移の管理をサポートする。
ベクトルおよび行列計算へのHLC推論に関するフレームワーク実験の実装は、次のレベルの自動化に到達する可能性を示す。
論文 参考訳(メタデータ) (2023-08-21T22:21:15Z) - Online Service Migration in Edge Computing with Incomplete Information:
A Deep Recurrent Actor-Critic Method [18.891775769665102]
マルチアクセスエッジコンピューティング(MEC)は、クラウドコンピューティングをネットワークエッジに拡張する新興コンピューティングパラダイムである。
サービス移行には,qos(quality-of-service)を維持するためのユーザサービスの移行場所を決定する必要がある
本稿では,ユーザ中心で効果的なオンライン移行決定が可能な,新たな学習駆動型手法である深層反復型アクタクリティックベースサービスマイグレーション(dracm)を提案する。
論文 参考訳(メタデータ) (2020-12-16T00:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。