Analysis of AI Techniques for Orchestrating Edge-Cloud Application Migration
- URL: http://arxiv.org/abs/2507.10119v1
- Date: Mon, 14 Jul 2025 10:03:23 GMT
- Title: Analysis of AI Techniques for Orchestrating Edge-Cloud Application Migration
- Authors: Sadig Gojayev, Ahmad Anaqreh, Carolina Fortuna,
- Abstract summary: We identify, analyze and compare selected state-of-the-art Artificial Intelligence (AI) planning and Reinforcement Learning (RL) approaches for solving the class of edge-cloud application migration problems.<n>The aim is to understand available techniques capable of orchestrating such application migration in emerging computing environments.
- Score: 0.196629787330046
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Application migration in edge-cloud system enables high QoS and cost effective service delivery. However, automatically orchestrating such migration is typically solved with heuristic approaches. Starting from the Markov Decision Process (MDP), in this paper, we identify, analyze and compare selected state-of-the-art Artificial Intelligence (AI) planning and Reinforcement Learning (RL) approaches for solving the class of edge-cloud application migration problems that can be modeled as Towers of Hanoi (ToH) problems. We introduce a new classification based on state space definition and analyze the compared models also through this lense. The aim is to understand available techniques capable of orchestrating such application migration in emerging computing continuum environments.
Related papers
- Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization [0.0]
We provide an overview of the state of the art in this continuously evolving field.<n>AutoML makes machine learning techniques accessible to domain scientists who are interested in applying advanced analytics.
arXiv Detail & Related papers (2025-04-08T16:51:22Z) - AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.<n>Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.<n>This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
This study investigates the potential of feature attribution methods to filter out uninformative features in input data for regression problems.
We introduce a feature selection pipeline that combines Integrated Gradients with k-means clustering to select an optimal set of variables from the initial data space.
To validate the effectiveness of this approach, we apply it to a real-world industrial problem - blade vibration analysis in the development process of turbo machinery.
arXiv Detail & Related papers (2024-09-25T09:50:51Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data.
However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency.
This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective.
arXiv Detail & Related papers (2023-12-23T11:57:53Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
We propose a new definition of Age of Information (AoI) and, based on the redefined AoI, we formulate an online AoI problem for MEC systems.
We introduce Post-Decision States (PDSs) to exploit the partial knowledge of the system's dynamics.
We also combine PDSs with deep RL to further improve the algorithm's applicability, scalability, and robustness.
arXiv Detail & Related papers (2023-12-01T01:30:49Z) - CSM-H-R: A Context Modeling Framework in Supporting Reasoning Automation for Interoperable Intelligent Systems and Privacy Protection [0.07499722271664144]
We propose a novel framework for automation of High Level Context (HLC) reasoning across intelligent systems at scale.
The design of the framework supports the sharing and inter context among intelligent systems and the components for handling CSMs and the management of hierarchy, relationship, and transition.
The implementation of the framework experiments on the HLC reasoning into vector and matrix computing and presents the potential to reach next level of automation.
arXiv Detail & Related papers (2023-08-21T22:21:15Z) - Online Service Migration in Edge Computing with Incomplete Information:
A Deep Recurrent Actor-Critic Method [18.891775769665102]
Multi-access Edge Computing (MEC) is an emerging computing paradigm that extends cloud computing to the network edge.
Service migration needs to decide where to migrate user services for maintaining high Quality-of-Service (QoS)
We propose a new learning-driven method, namely Deep Recurrent ActorCritic based service Migration (DRACM), which is usercentric and can make effective online migration decisions.
arXiv Detail & Related papers (2020-12-16T00:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.