Understanding the Rank of Tensor Networks via an Intuitive Example-Driven Approach
- URL: http://arxiv.org/abs/2507.10170v1
- Date: Mon, 14 Jul 2025 11:33:14 GMT
- Title: Understanding the Rank of Tensor Networks via an Intuitive Example-Driven Approach
- Authors: Wuyang Zhou, Giorgos Iacovides, Kriton Konstantinidis, Ilya Kisil, Danilo Mandic,
- Abstract summary: Network (TN) decompositions have emerged as an indispensable tool in Big Data analytics.<n>TN ranks govern the efficiency and expressivity of TN decompositions.<n>This Lecture Note aims to demystify the concept of TN ranks through real-life examples and intuitive visualizations.
- Score: 3.903340895162304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor Network (TN) decompositions have emerged as an indispensable tool in Big Data analytics owing to their ability to provide compact low-rank representations, thus alleviating the ``Curse of Dimensionality'' inherent in handling higher-order data. At the heart of their success lies the concept of TN ranks, which governs the efficiency and expressivity of TN decompositions. However, unlike matrix ranks, TN ranks often lack a universal meaning and an intuitive interpretation, with their properties varying significantly across different TN structures. Consequently, TN ranks are frequently treated as empirically tuned hyperparameters, rather than as key design parameters inferred from domain knowledge. The aim of this Lecture Note is therefore to demystify the foundational yet frequently misunderstood concept of TN ranks through real-life examples and intuitive visualizations. We begin by illustrating how domain knowledge can guide the selection of TN ranks in widely-used models such as the Canonical Polyadic (CP) and Tucker decompositions. For more complex TN structures, we employ a self-explanatory graphical approach that generalizes to tensors of arbitrary order. Such a perspective naturally reveals the relationship between TN ranks and the corresponding ranks of tensor unfoldings (matrices), thereby circumventing cumbersome multi-index tensor algebra while facilitating domain-informed TN design. It is our hope that this Lecture Note will equip readers with a clear and unified understanding of the concept of TN rank, along with the necessary physical insight and intuition to support the selection, explainability, and deployment of tensor methods in both practical applications and educational contexts.
Related papers
- Tensor Convolutional Network for Higher-Order Interaction Prediction in Sparse Tensors [74.31355755781343]
We propose TCN, an accurate and compatible tensor convolutional network that integrates seamlessly with TF methods for predicting top-k interactions.<n>We show that TCN integrated with a TF method outperforms competitors, including TF methods and a hyperedge prediction method.
arXiv Detail & Related papers (2025-03-14T18:22:20Z) - Deep Tree Tensor Networks for Image Recognition [1.8434042562191815]
This paper introduces a novel architecture named ittextbfDeep textbfTree textbfTensor textbfNetwork (DTTN)<n>DTTN captures $2L$-order multiplicative interactions across features through multilinear operations.<n>We theoretically reveal the equivalency among quantum-inspired TN models and interacting networks under certain conditions.
arXiv Detail & Related papers (2025-02-14T05:41:33Z) - Convolutions and More as Einsum: A Tensor Network Perspective with Advances for Second-Order Methods [2.8645507575980074]
We simplify convolutions by viewing them as tensor networks (TNs)
TNs allow reasoning about the underlying tensor multiplications by drawing diagrams, manipulating them to perform function transformations like differentiation, and efficiently evaluating them with einsum.
Our TN implementation accelerates KFAC variant up to 4.5x while removing the standard implementation's memory overhead, and enables new hardware-efficient dropouts for approximate backpropagation.
arXiv Detail & Related papers (2023-07-05T13:19:41Z) - TANGOS: Regularizing Tabular Neural Networks through Gradient
Orthogonalization and Specialization [69.80141512683254]
We introduce Tabular Neural Gradient Orthogonalization and gradient (TANGOS)
TANGOS is a novel framework for regularization in the tabular setting built on latent unit attributions.
We demonstrate that our approach can lead to improved out-of-sample generalization performance, outperforming other popular regularization methods.
arXiv Detail & Related papers (2023-03-09T18:57:13Z) - Permutation Search of Tensor Network Structures via Local Sampling [27.155329364896144]
In this paper, we consider a practical variant of TN-SS, dubbed TN permutation search (TN-PS)
We propose a practically-efficient algorithm to resolve the problem of TN-PS.
Numerical results demonstrate that the new algorithm can reduce the required model size of TNs in extensive benchmarks.
arXiv Detail & Related papers (2022-06-14T05:12:49Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Discrete-Valued Neural Communication [85.3675647398994]
We show that restricting the transmitted information among components to discrete representations is a beneficial bottleneck.
Even though individuals have different understandings of what a "cat" is based on their specific experiences, the shared discrete token makes it possible for communication among individuals to be unimpeded by individual differences in internal representation.
We extend the quantization mechanism from the Vector-Quantized Variational Autoencoder to multi-headed discretization with shared codebooks and use it for discrete-valued neural communication.
arXiv Detail & Related papers (2021-07-06T03:09:25Z) - Adaptive Learning of Tensor Network Structures [6.407946291544721]
We leverage the TN formalism to develop a generic and efficient adaptive algorithm to learn the structure and the parameters of a TN from data.
Our algorithm can adaptively identify TN structures with small number of parameters that effectively optimize any differentiable objective function.
arXiv Detail & Related papers (2020-08-12T16:41:56Z) - Randomly Weighted, Untrained Neural Tensor Networks Achieve Greater
Relational Expressiveness [3.5408022972081694]
We propose Randomly Weighted Networks (RWTNs), which incorporate randomly drawn untrained tensors into a network with a trained decoder network.
We show that RWTNs meet or surpass the performance of traditionally trained LTNs for Image Interpretation (SIITNs)
We demonstrate that RWTNs can achieve similar performance as LTNs for object classification while using fewer parameters for learning.
arXiv Detail & Related papers (2020-06-01T19:36:29Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.