論文の概要: Breaking the Myth: Can Small Models Infer Postconditions Too?
- arxiv url: http://arxiv.org/abs/2507.10182v1
- Date: Mon, 14 Jul 2025 11:44:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:24.774499
- Title: Breaking the Myth: Can Small Models Infer Postconditions Too?
- Title(参考訳): 神話を破る - 小さなモデルもポストコンディションを推測できるのか?
- Authors: Gehao Zhang, Zhenting Wang, Juan Zhai,
- Abstract要約: 小型の微調整言語モデルにより,計算コストを大幅に削減して高品質な後条件生成を実現することができることを示す。
われわれのアプローチは、実世界のリポジトリの依存関係に取り組み、プレステート情報を保存し、表現的で正確な仕様を作成できる。
- 参考スコア(独自算出の注目度): 15.725275719200303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Formal specifications are essential for ensuring software correctness, yet manually writing them is tedious and error-prone. Large Language Models (LLMs) have shown promise in generating such specifications from natural language intents, but the giant model size and high computational demands raise a fundamental question: Do we really need large models for this task? In this paper, we show that a small, fine-tuned language model can achieve high-quality postcondition generation with much lower computational costs. We construct a specialized dataset of prompts, reasoning logs, and postconditions, then supervise the fine-tuning of a $7$B-parameter code model. Our approach tackles real-world repository dependencies and preserves pre-state information, allowing for expressive and accurate specifications. We evaluate the model on a benchmark of real-world Java bugs (Defects4J) and compare against both proprietary giants (e.g., GPT-4o) and open-source large models. Empirical results demonstrate that our compact model matches or outperforms significantly larger counterparts in syntax correctness, semantic correctness, and bug-distinguishing capability. These findings highlight that targeted fine-tuning on a modest dataset can enable small models to achieve results formerly seen only in massive, resource-heavy LLMs, offering a practical and efficient path for the real-world adoption of automated specification generation.
- Abstract(参考訳): 形式的な仕様はソフトウェアの正しさを保証するのに不可欠ですが、手作業で記述するのは面倒でエラーを起こします。
大きな言語モデル(LLM)は、自然言語の意図からそのような仕様を生成することを約束していますが、巨大なモデルのサイズと高い計算要求が根本的な疑問を引き起こします。
本稿では,小型で微調整された言語モデルを用いて,計算コストを大幅に削減して高品質な後条件生成を実現することを示す。
我々は、プロンプト、推論ログ、後条件の特別なデータセットを構築し、それから7ドルBパラメータのコードモデルの微調整を監督する。
われわれのアプローチは、実世界のリポジトリの依存関係に取り組み、プレステート情報を保存し、表現的で正確な仕様を作成できる。
実世界のJavaバグ(Defects4J)のベンチマークでモデルを評価し、プロプライエタリな巨人(例:GPT-4o)とオープンソースの大規模モデルとの比較を行った。
実験結果から,我々のコンパクトモデルは,構文の正しさ,意味の正しさ,バグの識別能力において,はるかに大きな精度で一致し,性能が向上することが示された。
これらの結果は、控えめなデータセットをターゲットとした微調整によって、大規模でリソースの多いLLMでしか見られなかった結果が、小さなモデルで達成できることを強調し、自動仕様生成の現実的な採用のための実用的で効率的なパスを提供する。
関連論文リスト
- InkubaLM: A small language model for low-resource African languages [9.426968756845389]
InkubaLMは0.4億のパラメータを持つ小さな言語モデルである。
パラメータ数が大幅に大きいモデルに匹敵するパフォーマンスを実現する。
複数の言語にまたがる顕著な一貫性を示す。
論文 参考訳(メタデータ) (2024-08-30T05:42:31Z) - Small Language Models are Good Too: An Empirical Study of Zero-Shot Classification [4.4467858321751015]
異なるアーキテクチャとスコアリング関数を用いて、77Mから40Bパラメータの言語モデルをベンチマークする。
この結果から、小さなモデルはテキストを効果的に分類し、より大きなテキストに匹敵するか、上回っていることが明らかとなった。
この研究は、大きめが常に良いとは限らないという考えを強調し、リソース効率の良い小さなモデルが特定のデータ分類の課題に対して実行可能なソリューションを提供するかもしれないことを示唆している。
論文 参考訳(メタデータ) (2024-04-17T07:10:28Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Compressing Sentence Representation with maximum Coding Rate Reduction [0.0]
ほとんどの自然言語推論問題では、文表現は意味検索タスクに必要である。
スペースとハードウェアの制限のため、より小さなモデルを使用する場合には、同等の結果を得る必要がある。
複雑性と文埋め込みサイズを低減した新しい言語モデルは,セマンティック検索ベンチマークにおいて同等の結果が得られることを実証した。
論文 参考訳(メタデータ) (2023-04-25T09:23:43Z) - Speculative Decoding with Big Little Decoder [108.95187338417541]
Big Little Decoder (BiLD) は、幅広いテキスト生成アプリケーションの推論効率と遅延を改善するフレームワークである。
NVIDIA T4 GPUでは、当社のフレームワークは最大2.12倍の高速化を実現し、生成品質の最小化を実現している。
私たちのフレームワークは完全にプラグアンドプレイで、トレーニングプロセスやモデルアーキテクチャの変更なしに適用できます。
論文 参考訳(メタデータ) (2023-02-15T18:55:29Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Efficient Large Scale Language Modeling with Mixtures of Experts [61.45159383372181]
エキスパート層(MoE)の混合により、条件付き計算による言語モデルの効率的なスケーリングが可能になる。
本稿では, 自己回帰型 MoE 言語モデルが, 広範囲な環境下での高密度モデルと比較して, どのようにスケールするかを示す実験的検討を行った。
論文 参考訳(メタデータ) (2021-12-20T17:05:11Z) - CoreLM: Coreference-aware Language Model Fine-Tuning [0.0]
我々は、現在の事前学習言語モデルのアーキテクチャを拡張した、CoreLMというファインチューニングフレームワークを提案する。
我々は、モデルの文脈空間外で利用可能な情報を作成し、計算コストのごく一部について、よりよい言語モデルをもたらす。
提案モデルでは, GPT2 と比較した場合, GUMBY と LAMBDADA のデータセットのパープレキシティが低くなる。
論文 参考訳(メタデータ) (2021-11-04T08:44:31Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
本稿では,人間の読みやすいエンティティ表現を作成し,箱から高パフォーマンスを実現する手法を提案する。
我々の表現は、微粒な実体型に対する後続確率に対応するベクトルである。
特定のドメインに対して,学習に基づく方法で,型セットのサイズを縮小できることを示す。
論文 参考訳(メタデータ) (2020-04-30T23:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。