Non-exchangeable Conformal Prediction with Optimal Transport: Tackling Distribution Shifts with Unlabeled Data
- URL: http://arxiv.org/abs/2507.10425v1
- Date: Mon, 14 Jul 2025 16:10:55 GMT
- Title: Non-exchangeable Conformal Prediction with Optimal Transport: Tackling Distribution Shifts with Unlabeled Data
- Authors: Alvaro H. C. Correia, Christos Louizos,
- Abstract summary: Conformal prediction is a distribution-free uncertainty quantification method that has gained popularity in the machine learning community.<n>It is difficult to verify and often violated in practice due to so-called distribution shifts.<n>We show that it is possible to estimate the loss in coverage and mitigate it in case of distribution shift.
- Score: 8.53604202585306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction is a distribution-free uncertainty quantification method that has gained popularity in the machine learning community due to its finite-sample guarantees and ease of use. Its most common variant, dubbed split conformal prediction, is also computationally efficient as it boils down to collecting statistics of the model predictions on some calibration data not yet seen by the model. Nonetheless, these guarantees only hold if the calibration and test data are exchangeable, a condition that is difficult to verify and often violated in practice due to so-called distribution shifts. The literature is rife with methods to mitigate the loss in coverage in this non-exchangeable setting, but these methods require some prior information on the type of distribution shift to be expected at test time. In this work, we study this problem via a new perspective, through the lens of optimal transport, and show that it is possible to estimate the loss in coverage and mitigate it in case of distribution shift.
Related papers
- Conformal Prediction Adaptive to Unknown Subpopulation Shifts [11.046912341345294]
Conformal prediction is widely used to equip black-box machine learning models with uncertainty quantification enjoying formal coverage guarantees.<n>In this work, we address subpopulation shifts, where the test environment exhibits an unknown and differing mixture of subpopulations compared to the calibration data.<n>We propose new methods that provably adapt conformal prediction to such shifts, ensuring valid coverage without requiring explicit knowledge of subpopulation structure.
arXiv Detail & Related papers (2025-06-05T20:58:39Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data.<n>Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption.
arXiv Detail & Related papers (2024-06-08T08:56:47Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and test data by adapting a given model w.r.t. any test sample.
Prior methods perform backpropagation for each test sample, resulting in unbearable optimization costs to many applications.
We propose an Efficient Anti-Forgetting Test-Time Adaptation (EATA) method which develops an active sample selection criterion to identify reliable and non-redundant samples.
arXiv Detail & Related papers (2024-03-18T05:49:45Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - Test-time Recalibration of Conformal Predictors Under Distribution Shift
Based on Unlabeled Examples [30.61588337557343]
Conformal predictors provide uncertainty estimates by computing a set of classes with a user-specified probability.
We propose a method that provides excellent uncertainty estimates under natural distribution shifts.
arXiv Detail & Related papers (2022-10-09T04:46:00Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
We connect domain adaptation and predictive uncertainty literature to predict model accuracy on challenging unseen distributions.
We find that the difference of confidences (DoC) of a classifier's predictions successfully estimates the classifier's performance change over a variety of shifts.
We specifically investigate the distinction between synthetic and natural distribution shifts and observe that despite its simplicity DoC consistently outperforms other quantifications of distributional difference.
arXiv Detail & Related papers (2021-07-07T15:50:18Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.