論文の概要: DeepResearch$^{\text{Eco}}$: A Recursive Agentic Workflow for Complex Scientific Question Answering in Ecology
- arxiv url: http://arxiv.org/abs/2507.10522v1
- Date: Mon, 14 Jul 2025 17:47:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.653793
- Title: DeepResearch$^{\text{Eco}}$: A Recursive Agentic Workflow for Complex Scientific Question Answering in Ecology
- Title(参考訳): DeepResearch$^{\text{Eco}}$: 生態学における複雑な科学的質問応答のための再帰的エージェントワークフロー
- Authors: Jennifer D'Souza, Endres Keno Sander, Andrei Aioanei,
- Abstract要約: DeepResearchは、自動化された科学合成のための新しいエージェントLLMベースのシステムである。
深度制御と広帯域制御によるオリジナルの研究課題の探索を支援する。
DeepResearchは、最大21倍のソース統合を実現している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce DeepResearch$^{\text{Eco}}$, a novel agentic LLM-based system for automated scientific synthesis that supports recursive, depth- and breadth-controlled exploration of original research questions -- enhancing search diversity and nuance in the retrieval of relevant scientific literature. Unlike conventional retrieval-augmented generation pipelines, DeepResearch enables user-controllable synthesis with transparent reasoning and parameter-driven configurability, facilitating high-throughput integration of domain-specific evidence while maintaining analytical rigor. Applied to 49 ecological research questions, DeepResearch achieves up to a 21-fold increase in source integration and a 14.9-fold rise in sources integrated per 1,000 words. High-parameter settings yield expert-level analytical depth and contextual diversity. Source code available at: https://github.com/sciknoworg/deep-research.
- Abstract(参考訳): DeepResearch$^{\text{Eco}}$は、科学文献の検索における探索の多様性とニュアンスを高めるために、再帰的、深さ、幅を制御したオリジナルの研究課題の探索を支援する、新しいエージェント的LLMベースの自動科学合成システムである。
従来の検索拡張生成パイプラインとは異なり、DeepResearchは透明な推論とパラメータ駆動の構成性を備えたユーザ制御可能な合成を可能にし、分析厳密性を維持しながら、ドメイン固有のエビデンスを高スループットで統合することを可能にする。
49の生態学的研究質問に適用されたDeepResearchは、ソース統合の21倍、1000ワード毎に統合されたソースの14.9倍の上昇を達成する。
高パラメータ設定は専門家レベルの分析深度と文脈の多様性をもたらす。
ソースコードは、https://github.com/sciknoworg/deep-research.comで公開されている。
関連論文リスト
- DeepSieve: Information Sieving via LLM-as-a-Knowledge-Router [57.28685457991806]
DeepSieveはエージェントRAGフレームワークで、LLM-as-a-knowledge-routerを介して情報を収集する。
我々の設計はモジュール性、透明性、適応性を重視しており、エージェントシステム設計の最近の進歩を活用している。
論文 参考訳(メタデータ) (2025-07-29T17:55:23Z) - Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) は、外部知識を注入することによって、Large Language Models (LLM) の事実性を高める。
逆に、純粋に推論指向のアプローチは、しばしば幻覚的あるいは誤った事実を必要とする。
この調査は両鎖を統一的推論-検索の観点から合成する。
論文 参考訳(メタデータ) (2025-07-13T03:29:41Z) - Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
検索強化生成(RAG)の形式を評価するための新しいベンチマークを提案する。
RAGは、多種多様な、しかし関連するソースに対して、ソースを意識したマルチホップ推論を必要とする。
製品計画、開発、サポートステージをまたいだビジネスをシミュレートする合成データパイプラインを使用して構築します。
論文 参考訳(メタデータ) (2025-06-29T08:34:59Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
推論とエージェント能力を備えた大規模言語モデル(LLM)は、エージェントディープリサーチ(Agenic Deep Research)と呼ばれる新しいパラダイムを取り入れている。
静的なWeb検索から,計画,探索,学習を行う対話型エージェントベースのシステムへの進化を辿ります。
我々はエージェントディープリサーチが既存のアプローチを著しく上回るだけでなく、将来の情報探索において支配的なパラダイムになることを実証する。
論文 参考訳(メタデータ) (2025-06-23T17:27:19Z) - Context-Aware Scientific Knowledge Extraction on Linked Open Data using Large Language Models [0.0]
本稿では,クエリ固有の知識を抽出し,洗練し,ランク付けするシステムであるWISE(Workflow for Intelligent Scientific Knowledge extract)を紹介する。
WISEは、様々な情報源から知識を体系的に探求し、合成することによって、詳細な、組織化された回答を提供する。
論文 参考訳(メタデータ) (2025-06-21T04:22:34Z) - DeepResearch Bench: A Comprehensive Benchmark for Deep Research Agents [30.768405850755602]
DeepResearch Benchは100のPhDレベルの研究タスクからなるベンチマークである。
ディープリサーチエージェントの評価は本質的に複雑で、労働集約的である。
本稿では,人間の判断に強く適合する2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2025-06-13T13:17:32Z) - SimpleDeepSearcher: Deep Information Seeking via Web-Powered Reasoning Trajectory Synthesis [89.99161034065614]
Retrieval-augmented Generation (RAG) システムは複雑なディープ検索シナリオにおいて高度な大規模言語モデル(LLM)を持つ。
既存のアプローチでは、高品質なトレーニングトラジェクトリが欠如し、分散ミスマッチに苦しむ、重要な制限に直面しています。
本稿では,複雑なトレーニングパラダイムではなく,戦略的データエンジニアリングによるギャップを埋めるフレームワークであるSimpleDeepSearcherを紹介する。
論文 参考訳(メタデータ) (2025-05-22T16:05:02Z) - WebThinker: Empowering Large Reasoning Models with Deep Research Capability [60.81964498221952]
WebThinkerは、大規模な推論モデルに、Webを自律的に検索し、Webページをナビゲートし、推論プロセス中に研究レポートをドラフトする権限を与えるディープリサーチエージェントである。
また、textbf Autonomous Think-Search-and-Draft戦略を採用しており、モデルがシームレスに推論、情報収集、レポート作成をリアルタイムで行うことができる。
我々のアプローチは複雑なシナリオにおけるLEMの信頼性と適用性を高め、より有能で多目的な深層研究システムへの道を開く。
論文 参考訳(メタデータ) (2025-04-30T16:25:25Z) - DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments [20.498100965239818]
我々は、LLMベースのディープリサーチエージェントのエンドツーエンドトレーニングのための、初の総合的なフレームワークであるDeepResearcherを紹介する。
固定コーパス内にすべての必要な情報が存在すると仮定するRAGベースのアプローチとは異なり、我々の手法はオープンウェブのノイズ、非構造化、動的性質をナビゲートするエージェントを訓練する。
オープンドメインの研究タスクに関する大規模な実験は、DeepResearcherがエンジニアリングベースの素早いベースラインよりも最大28.9ポイントの大幅な改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-04-04T04:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。