ScaffoldAvatar: High-Fidelity Gaussian Avatars with Patch Expressions
- URL: http://arxiv.org/abs/2507.10542v1
- Date: Mon, 14 Jul 2025 17:59:03 GMT
- Title: ScaffoldAvatar: High-Fidelity Gaussian Avatars with Patch Expressions
- Authors: Shivangi Aneja, Sebastian Weiss, Irene Baeza, Prashanth Chandran, Gaspard Zoss, Matthias Nießner, Derek Bradley,
- Abstract summary: We propose to couple locally-defined facial expressions with 3D Gaussian splatting to enable creating ultra-high fidelity, expressive and photorealistic 3D head avatars.<n>In particular, we leverage a patch-based geometric 3D face model to extract patch expressions and learn how to translate these into local dynamic skin appearance and motion.<n>We employ color-based densification and progressive training to obtain high-quality results and faster convergence for high resolution 3K training images.
- Score: 49.34398022152462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating high-fidelity real-time animated sequences of photorealistic 3D head avatars is important for many graphics applications, including immersive telepresence and movies. This is a challenging problem particularly when rendering digital avatar close-ups for showing character's facial microfeatures and expressions. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple locally-defined facial expressions with 3D Gaussian splatting to enable creating ultra-high fidelity, expressive and photorealistic 3D head avatars. In contrast to previous works that operate on a global expression space, we condition our avatar's dynamics on patch-based local expression features and synthesize 3D Gaussians at a patch level. In particular, we leverage a patch-based geometric 3D face model to extract patch expressions and learn how to translate these into local dynamic skin appearance and motion by coupling the patches with anchor points of Scaffold-GS, a recent hierarchical scene representation. These anchors are then used to synthesize 3D Gaussians on-the-fly, conditioned by patch-expressions and viewing direction. We employ color-based densification and progressive training to obtain high-quality results and faster convergence for high resolution 3K training images. By leveraging patch-level expressions, ScaffoldAvatar consistently achieves state-of-the-art performance with visually natural motion, while encompassing diverse facial expressions and styles in real time.
Related papers
- EVA: Expressive Virtual Avatars from Multi-view Videos [51.33851869426057]
We introduce Expressive Virtual Avatars (EVA), an actor-specific, fully controllable, and expressive human avatar framework.<n>EVA achieves high-fidelity, lifelike renderings in real time while enabling independent control of facial expressions, body movements, and hand gestures.<n>This work represents a significant advancement towards fully drivable digital human models.
arXiv Detail & Related papers (2025-05-21T11:22:52Z) - TeGA: Texture Space Gaussian Avatars for High-Resolution Dynamic Head Modeling [52.87836237427514]
Photoreal avatars are seen as a key component in emerging applications in telepresence, extended reality, and entertainment.<n>We present a new high-detail 3D head avatar model that improves upon the state of the art.
arXiv Detail & Related papers (2025-05-08T22:10:27Z) - GaussianSpeech: Audio-Driven Gaussian Avatars [76.10163891172192]
We introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio.<n>We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details.
arXiv Detail & Related papers (2024-11-27T18:54:08Z) - GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations [54.94362657501809]
We propose a new method to generate highly dynamic and deformable human head avatars from multi-view imagery in real-time.
At the core of our method is a hierarchical representation of head models that allows to capture the complex dynamics of facial expressions and head movements.
We train this coarse-to-fine facial avatar model along with the head pose as a learnable parameter in an end-to-end framework.
arXiv Detail & Related papers (2024-09-18T13:05:43Z) - DEGAS: Detailed Expressions on Full-Body Gaussian Avatars [13.683836322899953]
We present DEGAS, the first 3D Gaussian Splatting (3DGS)-based modeling method for full-body avatars with rich facial expressions.<n>We propose to adopt the expression latent space trained solely on 2D portrait images, bridging the gap between 2D talking faces and 3D avatars.
arXiv Detail & Related papers (2024-08-20T06:52:03Z) - Expressive Whole-Body 3D Gaussian Avatar [34.3179424934446]
We present ExAvatar, an expressive whole-body 3D human avatar learned from a short monocular video.
The main challenges are 1) a limited diversity of facial expressions and poses in the video and 2) the absence of 3D observations, such as 3D scans and RGBD images.
arXiv Detail & Related papers (2024-07-31T15:29:13Z) - GaussianAvatar: Towards Realistic Human Avatar Modeling from a Single Video via Animatable 3D Gaussians [51.46168990249278]
We present an efficient approach to creating realistic human avatars with dynamic 3D appearances from a single video.
GustafAvatar is validated on both the public dataset and our collected dataset.
arXiv Detail & Related papers (2023-12-04T18:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.