論文の概要: EmbRACE-3K: Embodied Reasoning and Action in Complex Environments
- arxiv url: http://arxiv.org/abs/2507.10548v1
- Date: Mon, 14 Jul 2025 17:59:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.67255
- Title: EmbRACE-3K: Embodied Reasoning and Action in Complex Environments
- Title(参考訳): EmbRACE-3K:複雑な環境における身体的推論と行動
- Authors: Mingxian Lin, Wei Huang, Yitang Li, Chengjie Jiang, Kui Wu, Fangwei Zhong, Shengju Qian, Xin Wang, Xiaojuan Qi,
- Abstract要約: EmRACE-3KはUnreal EngineとUnrealCV-Zooフレームワークを使って構築された3000以上の言語誘導タスクのデータセットである。
探索,動的空間意味推論,多段階ゴール実行の3つの重要な次元にわたって,VLMの具体的推論能力を評価するためのベンチマークを構築した。
ゼロショット設定では、すべてのモデルが20%未満の成功率を達成した。
- 参考スコア(独自算出の注目度): 48.32142591866083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.
- Abstract(参考訳): 近年の視覚言語モデル (VLM) は受動的, オフライン画像, 映像理解タスクにおいて高い性能を示した。
しかし、オンラインインタラクションとアクティブなシーン理解を必要とする、具体的環境におけるそれらの効果は依然として限られている。
このようなシナリオでは、エージェントは一人称視点から環境を知覚し、それぞれのアクションがその後の観察を動的に形作る。
GPT-4o、Claude 3.5 Sonnet、Gemini 2.5 Proのような最先端のモデルでさえ、オープン環境の相互作用に苦慮し、空間的推論や長期計画において明らかな限界を示す。
このギャップに対処するために,Unreal EngineとUnrealCV-Zooフレームワークを用いて構築された多種多様なフォトリアリスティック環境にある3000以上の言語誘導タスクのデータセットであるEmRACE-3Kを紹介した。
タスクには、ナビゲーション、オブジェクト操作、多段階ゴール実行など、幅広い具体的課題が含まれている。
各タスクは多段階の軌跡として展開され、一対一の視覚観察と高レベルな指示、接地行動、および各ステップにおけるエージェントの意図を表現する自然言語の有理性とをペアリングする。
EmRACE-3Kを用いて、探索、動的空間意味推論、多段階ゴール実行の3つの主要な次元にわたるVLMの具体的推論能力を評価するベンチマークを確立する。
ゼロショット設定では、すべてのモデルが20%未満の成功率を達成した。
EmRACE-3Kの有用性を示すために,教師付き学習と強化学習を用いたQwen2.5-VL-7Bをさらに微調整する。
このアプローチは、3つの課題カテゴリすべてで大幅に改善され、具体的推論機能の開発を可能にするデータセットの有効性が強調される。
関連論文リスト
- ReSem3D: Refinable 3D Spatial Constraints via Fine-Grained Semantic Grounding for Generalizable Robotic Manipulation [12.059517583878756]
本稿では,意味的に多様な環境に対する統一的な操作フレームワークReSem3Dを提案する。
本稿では,ReSem3Dがゼロショット条件下で多様な操作を行い,適応性と一般化性を示すことを示す。
論文 参考訳(メタデータ) (2025-07-24T10:07:31Z) - Move to Understand a 3D Scene: Bridging Visual Grounding and Exploration for Efficient and Versatile Embodied Navigation [54.04601077224252]
身近なシーン理解には、視覚空間情報の理解だけでなく、3D物理世界における次の探索場所の決定も必要である。
アンダーラインテキストbf3D視覚言語学習は、エンボディエージェントが環境を効果的に探索し理解することを可能にする。
モデルの汎用性は、カテゴリ、言語記述、参照イメージなど、多様な入力モダリティを使ったナビゲーションを可能にする。
論文 参考訳(メタデータ) (2025-07-05T14:15:52Z) - ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models [47.237216851265316]
視覚言語モデル (VLM) は視覚的内容の理解と推論において顕著な能力を示した。
現在のVLMは、主に自我中心の空間的推論(カメラの観点から)に優れるが、同中心の視点に一般化することができない。
マルチ視点空間位置認識評価に特化して設計された,初の総合的なベンチマークであるViewSpatial-Benchを紹介する。
論文 参考訳(メタデータ) (2025-05-27T17:59:26Z) - Hierarchical Instruction-aware Embodied Visual Tracking [35.73851196966425]
User-Centric Embodied Visual Tracking (UC-EVT)は、強化学習に基づくモデルにおいて、新しい課題を提示している。
我々は,テキスト空間目標を仲介として利用する命令理解と行動生成を橋渡しする,テキストbfインストラクションを意識した身体的視覚追跡(HIEVT)エージェントを提案する。
論文 参考訳(メタデータ) (2025-05-27T04:36:26Z) - Agentic 3D Scene Generation with Spatially Contextualized VLMs [67.31920821192323]
本稿では,複雑な3D環境の生成,理解,編集を可能にする新しいパラダイムを提案する。
我々は,VLMが空間コンテキストから反復的に読み取って更新するエージェント型3Dシーン生成パイプラインを開発した。
その結果,我々のフレームワークは多様かつ困難な入力を処理でき,事前の作業では観測できないような一般化のレベルを達成することができることがわかった。
論文 参考訳(メタデータ) (2025-05-26T15:28:17Z) - A Real-to-Sim-to-Real Approach to Robotic Manipulation with VLM-Generated Iterative Keypoint Rewards [29.923942622540356]
動的タスク仕様として機能するPythonベースの報酬関数であるIterative Keypoint Reward(IKER)を紹介する。
我々はシミュレーションで現実のシーンを再構築し、生成した報酬を使って強化学習ポリシーを訓練する。
この結果から,ロボットが動的環境下で複数ステップのタスクを行えるようにしたIKERの有効性が示唆された。
論文 参考訳(メタデータ) (2025-02-12T18:57:22Z) - Grounding 3D Scene Affordance From Egocentric Interactions [52.5827242925951]
接地型3Dシーンアベイランスは、3D環境におけるインタラクティブな領域を見つけることを目的としている。
我々は,エゴセントリックなインタラクションから3Dシーンの空き時間を確保するという,新しい課題を紹介した。
論文 参考訳(メタデータ) (2024-09-29T10:46:19Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
視覚条件付き言語モデル(VLM)は、視覚対話、シーン理解、ロボットタスク計画などのアプリケーションに採用されている。
新しいリリースの量は多いが、イメージ前処理、アーキテクチャ、最適化に関する重要な設計決定は未調査である。
論文 参考訳(メタデータ) (2024-02-12T18:21:14Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
タスクの指示をエゴセントリックな視点から積極的に下す能力は、AIエージェントがタスクを達成したり、人間をバーチャルに支援する上で不可欠である。
本稿では,現在進行中のオブジェクトの役割を学習し,指示から正確に抽出することで,アクティブなオブジェクトをローカライズするフレーズグラウンドモデルの性能を向上させることを提案する。
Ego4DおよびEpic-Kitchensデータセットに関するフレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-10-23T16:14:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。