AI Mother Tongue: Self-Emergent Communication in MARL via Endogenous Symbol Systems
- URL: http://arxiv.org/abs/2507.10566v1
- Date: Mon, 07 Jul 2025 09:52:49 GMT
- Title: AI Mother Tongue: Self-Emergent Communication in MARL via Endogenous Symbol Systems
- Authors: Hung Ming Liu,
- Abstract summary: We show that when agents possess an endogenous symbol system, their neural representations naturally exhibit spontaneous semantic compression and Nash equilibrium-driven semantic convergence.<n>This discovery offers new avenues for bridging symbolism and connectionism.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Decentralized Multi-Agent Reinforcement Learning (MARL), the development of Emergent Communication has long been constrained by the ``Joint Exploration Dilemma'', leading agents to fall into a ``Communication Vacuum Equilibrium'' . Traditional methods address this by introducing inductive biases to facilitate communication emergence . This study fundamentally questions whether such artificial inductive biases are, in fact, over-engineering. Through experiments with the ``AI Mother Tongue'' (AIM) framework, based on a Vector Quantized Variational Autoencoder (VQ-VAE), we demonstrate that when agents possess an endogenous symbol system, their neural representations naturally exhibit spontaneous semantic compression and Nash equilibrium-driven semantic convergence, achieving effective symbolic communication without external inductive biases. This aligns with recent neuroscience findings suggesting that the human brain does not directly use human language for internal thought , and resonates with research on ``soft thinking'' capabilities in Large Language Models (LLMs) . Compared to traditional explicit communication methods, AIM demonstrates stronger generality and efficiency. The interpretable analysis toolkit developed in this study confirms that symbol usage exhibits a significant power-law distribution, leading to three major theoretical insights: the ``Neural Communication Hypothesis'', the ``Tool-First Principle'', and the ``Semantic Interpretability Paradigm''. Future research will explore the integration of Hierarchical Quantized Variational Autoencoders (HQ-VAE) to enhance AIM's complex expressive capabilities and investigate the potential for ``Reinforcement Learning (RL) Low-Level Pre-training''. This discovery offers new avenues for bridging symbolism and connectionism.
Related papers
- Boosting Neural Language Inference via Cascaded Interactive Reasoning [38.125341836302525]
Natural Language Inference (NLI) focuses on ascertaining the logical relationship between a given premise and hypothesis.<n>This task presents significant challenges due to inherent linguistic features such as diverse phrasing, semantic complexity, and contextual nuances.<n>We introduce the Cascaded Interactive Reasoning Network (CIRN), a novel architecture designed for deeper semantic comprehension in NLI.
arXiv Detail & Related papers (2025-05-10T11:37:15Z) - Simulating the Emergence of Differential Case Marking with Communicating Neural-Network Agents [2.184775414778289]
Differential Case Marking (DCM) refers to the phenomenon where grammatical case marking is applied selectively based on semantic, pragmatic, or other factors.<n>In this study, we employ such a framework in which agents first acquire an artificial language before engaging in communicative interactions.<n>Using a very generic communication optimization algorithm and neural-network learners that have no prior experience with language or semantic preferences, our results demonstrate that learning alone does not lead to DCM.
arXiv Detail & Related papers (2025-02-06T13:00:53Z) - Large Language Models as Theory of Mind Aware Generative Agents with Counterfactual Reflection [31.38516078163367]
ToM-agent is designed to empower LLMs-based generative agents to simulate ToM in open-domain conversational interactions.<n>ToM-agent disentangles the confidence from mental states, facilitating the emulation of an agent's perception of its counterpart's mental states.<n>Our findings indicate that the ToM-agent can grasp the underlying reasons for their counterpart's behaviors beyond mere semantic-emotional supporting or decision-making based on common sense.
arXiv Detail & Related papers (2025-01-26T00:32:38Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Exploring the LLM Journey from Cognition to Expression with Linear Representations [10.92882688742428]
This paper presents an in-depth examination of the evolution and interplay of cognitive and expressive capabilities in large language models (LLMs)
We define and explore the model's cognitive and expressive capabilities through linear representations across three critical phases: Pretraining, Supervised Fine-Tuning (SFT), and Reinforcement Learning from Human Feedback (RLHF)
Our findings unveil a sequential development pattern, where cognitive abilities are largely established during Pretraining, whereas expressive abilities predominantly advance during SFT and RLHF.
arXiv Detail & Related papers (2024-05-27T08:57:04Z) - Exchange-of-Thought: Enhancing Large Language Model Capabilities through
Cross-Model Communication [76.04373033082948]
Large Language Models (LLMs) have recently made significant strides in complex reasoning tasks through the Chain-of-Thought technique.
We propose Exchange-of-Thought (EoT), a novel framework that enables cross-model communication during problem-solving.
arXiv Detail & Related papers (2023-12-04T11:53:56Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
Semantic Communications [71.63189900803623]
A novel emergent SC system framework is proposed and is composed of a signaling game for emergent language design and a neuro-symbolic (NeSy) artificial intelligence (AI) approach for causal reasoning.
The ESC system is designed to enhance the novel metrics of semantic information, reliability, distortion and similarity.
arXiv Detail & Related papers (2022-10-21T15:33:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.