A Feed-Forward Artificial Intelligence Pipeline for Sustainable Desalination under Climate Uncertainties: UAE Insights
- URL: http://arxiv.org/abs/2507.10609v1
- Date: Sun, 13 Jul 2025 08:07:43 GMT
- Title: A Feed-Forward Artificial Intelligence Pipeline for Sustainable Desalination under Climate Uncertainties: UAE Insights
- Authors: Obumneme Nwafor, Chioma Nwafor, Amro Zakaria, Nkechi Nwankwo,
- Abstract summary: This study proposes a novel pipelined two-stage predictive modelling architecture.<n>The first stage forecasts aerosol optical depth (AOD) using satellite-derived time series and meteorological data.<n>The second stage uses the predicted AOD and other meteorological factors to predict desalination performance efficiency losses.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The United Arab Emirates (UAE) relies heavily on seawater desalination to meet over 90% of its drinking water needs. Desalination processes are highly energy intensive and account for approximately 15% of the UAE's electricity consumption, contributing to over 22% of the country's energy-related CO2 emissions. Moreover, these processes face significant sustainability challenges in the face of climate uncertainties such as rising seawater temperatures, salinity, and aerosol optical depth (AOD). AOD greatly affects the operational and economic performance of solar-powered desalination systems through photovoltaic soiling, membrane fouling, and water turbidity cycles. This study proposes a novel pipelined two-stage predictive modelling architecture: the first stage forecasts AOD using satellite-derived time series and meteorological data; the second stage uses the predicted AOD and other meteorological factors to predict desalination performance efficiency losses. The framework achieved 98% accuracy, and SHAP (SHapley Additive exPlanations) was used to reveal key drivers of system degradation. Furthermore, this study proposes a dust-aware rule-based control logic for desalination systems based on predicted values of AOD and solar efficiency. This control logic is used to adjust the desalination plant feed water pressure, adapt maintenance scheduling, and regulate energy source switching. To enhance the practical utility of the research findings, the predictive models and rule-based controls were packaged into an interactive dashboard for scenario and predictive analytics. This provides a management decision-support system for climate-adaptive planning.
Related papers
- Machine Learning for Proactive Groundwater Management: Early Warning and Resource Allocation [1.372066170415575]
We develop a machine learning pipeline that predicts groundwater level categories using climate data, hydro-meteorological records, and physiographic attributes.<n>Our approach integrates geospatial preprocessing, domain-driven feature engineering, and automated model selection to overcome monitoring limitations.
arXiv Detail & Related papers (2025-06-18T00:41:04Z) - Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction [64.4881275941927]
We present the first comprehensive evaluation of trustworthiness in a continental-scale multi-task LSTM model.<n>Our investigation uncovers systematic patterns of model performance disparities linked to basin characteristics.<n>This work serves as a timely call to action for advancing trustworthy data-driven methods for water resources management.
arXiv Detail & Related papers (2025-03-13T01:50:50Z) - SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
Climate and increasing droughts pose significant challenges to water resource management around the world.
We present a new dataset, SEN12-WATER, along with a benchmark using a end-to-end Deep Learning framework for proactive drought-related analysis.
arXiv Detail & Related papers (2024-09-25T16:50:59Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - AI-Driven approach for sustainable extraction of earth's subsurface renewable energy while minimizing seismic activity [44.99833362998488]
Injection of fluids into the Earth's crust can induce or trigger earthquakes.
We propose a new approach based on Reinforcement Learning for the control of human-induced seismicity.
We show that the reinforcement learning algorithm can interact efficiently with a robust controller.
arXiv Detail & Related papers (2024-08-07T10:06:04Z) - MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge [5.554201560484389]
Agricultural managed aquifer recharge (Ag-MAR) is proposed to recharge the aquifer by artificially flooding agricultural lands using surface water.
Current Ag-MAR scheduling does not take into account complex environmental factors such as weather and soil oxygen.
This paper proposes MARLP, the first end-to-end data-driven control system for Ag-MAR.
arXiv Detail & Related papers (2024-07-01T06:36:40Z) - AI techniques for near real-time monitoring of contaminants in coastal waters on board future Phisat-2 mission [3.0049721990828084]
This article describes the opportunities and issues for the contaminants monitoring on the Phisat-2 mission.
The specific characteristics of this mission, with the tools made available, will be presented.
Preliminary promising results are discussed and in progress and future work introduced.
arXiv Detail & Related papers (2024-04-30T14:25:32Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - AquaFeL-PSO: A Monitoring System for Water Resources using Autonomous
Surface Vehicles based on Multimodal PSO and Federated Learning [0.0]
The preservation, monitoring, and control of water resources has been a major challenge in recent decades.
This paper proposes a water monitoring system using autonomous surface vehicles, equipped with water quality sensors.
arXiv Detail & Related papers (2022-11-28T10:56:12Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Sub-Seasonal Climate Forecasting via Machine Learning: Challenges,
Analysis, and Advances [44.28969320556008]
Sub-seasonal climate forecasting (SSF) focuses on predicting key climate variables such as temperature and precipitation in the 2-week to 2-month time scales.
In this paper, we study a variety of machine learning (ML) approaches for SSF over the US mainland.
arXiv Detail & Related papers (2020-06-14T18:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.