Machine Learning for Proactive Groundwater Management: Early Warning and Resource Allocation
- URL: http://arxiv.org/abs/2506.22461v1
- Date: Wed, 18 Jun 2025 00:41:04 GMT
- Title: Machine Learning for Proactive Groundwater Management: Early Warning and Resource Allocation
- Authors: Chuan Li, Ruoxuan Yang,
- Abstract summary: We develop a machine learning pipeline that predicts groundwater level categories using climate data, hydro-meteorological records, and physiographic attributes.<n>Our approach integrates geospatial preprocessing, domain-driven feature engineering, and automated model selection to overcome monitoring limitations.
- Score: 1.372066170415575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Groundwater supports ecosystems, agriculture, and drinking water supplies worldwide, yet effective monitoring remains challenging due to sparse data, computational constraints, and delayed outputs from traditional approaches. We develop a machine learning pipeline that predicts groundwater level categories using climate data, hydro-meteorological records, and physiographic attributes processed through AutoGluon's automated ensemble framework. Our approach integrates geospatial preprocessing, domain-driven feature engineering, and automated model selection to overcome conventional monitoring limitations. Applied to a large-scale French dataset (n $>$ 3,440,000 observations from 1,500+ wells), the model achieves weighted F\_1 scores of 0.927 on validation data and 0.67 on temporally distinct test data. Scenario-based evaluations demonstrate practical utility for early warning systems and water allocation decisions under changing climate conditions. The open-source implementation provides a scalable framework for integrating machine learning into national groundwater monitoring networks, enabling more responsive and data-driven water management strategies.
Related papers
- Retrieval-Augmented Water Level Forecasting for Everglades [1.2163458046014013]
We introduce Retrieval-Augmented Forecasting (RAF) into the hydrology domain to enrich the model input before forecasting.<n>RAF identifies and incorporates relevant patterns from historical data, thereby enhancing contextual awareness and predictive accuracy.<n>We conduct a comprehensive evaluation on real-world data from the Everglades, demonstrating that the RAF framework yields substantial improvements in water level forecasting accuracy.
arXiv Detail & Related papers (2025-08-06T21:27:12Z) - ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion [48.540756751934836]
ReconMOST is a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction.<n>Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data.
arXiv Detail & Related papers (2025-06-12T06:27:22Z) - Efficient Self-Supervised Learning for Earth Observation via Dynamic Dataset Curation [67.23953699167274]
Self-supervised learning (SSL) has enabled the development of vision foundation models for Earth Observation (EO)<n>In EO, this challenge is amplified by the redundancy and heavy-tailed distributions common in satellite imagery.<n>We propose a dynamic dataset pruning strategy designed to improve SSL pre-training by maximizing dataset diversity and balance.
arXiv Detail & Related papers (2025-04-09T15:13:26Z) - DiTEC-WDN: A Large-Scale Dataset of Hydraulic Scenarios across Multiple Water Distribution Networks [41.94295877935867]
This dataset comprises 36,000 unique scenarios simulated over either short-term (24 hours) or long-term (1 year) periods.<n>DiTEC-WDN can support a variety of machine-learning tasks, including graph-level, node-level, and link-level regression, as well as time-series forecasting.<n>This contribution, released under a public license, encourages open scientific research in the critical water sector, eliminates the risk of exposing sensitive data, and fulfills the need for a large-scale water distribution network benchmark for study comparisons and scenario analysis.
arXiv Detail & Related papers (2025-03-21T14:14:03Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - GeoFUSE: A High-Efficiency Surrogate Model for Seawater Intrusion Prediction and Uncertainty Reduction [0.10923877073891446]
Seawater intrusion into coastal aquifers poses a significant threat to groundwater resources.
We develop GeoFUSE, a novel deep-learning-based surrogate framework.
We apply GeoFUSE to a 2D cross-section of the Beaver Creek tidal stream-floodplain system in Washington State.
arXiv Detail & Related papers (2024-10-26T08:10:32Z) - Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - A Graph-Based Modeling Framework for Tracing Hydrological Pollutant
Transport in Surface Waters [0.0]
We present a graph modeling framework for understanding pollutant transport and fate across waterbodies, rivers, and watersheds.
The graph representation provides an intuitive approach for capturing connectivity and for identifying upstream pollutant sources.
Our tool ultimately seeks to help stakeholders design effective pollution prevention/mitigation practices.
arXiv Detail & Related papers (2023-02-10T00:30:38Z) - Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models [0.0]
We propose a novel water level extracting approach, which employs Sentinel-1 Synthetic Aperture Radar imagery and Digital Elevation Model data sets.
Experiments show that the algorithm achieved a low average error of 0.93 meters over three reservoirs globally.
arXiv Detail & Related papers (2020-12-11T18:42:15Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.