A Code Comprehension Benchmark for Large Language Models for Code
- URL: http://arxiv.org/abs/2507.10641v1
- Date: Mon, 14 Jul 2025 16:19:49 GMT
- Title: A Code Comprehension Benchmark for Large Language Models for Code
- Authors: Jayant Havare, Saurav Chaudhary, Ganesh Ramakrishnan, Kaushik Maharajan, Srikanth Tamilselvam,
- Abstract summary: We propose fine-tuning large language models for code comprehension tasks using large-scale datasets.<n>We evaluate three code models of varying sizes on a suite of code comprehension tasks.<n>The most significant improvement is seen in the QWQ-32B model, where accuracy increases from 70% to 83.47%.
- Score: 20.007789979629784
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models have shown impressive capabilities in coding tasks like code generation and code completion, as they have been trained on a large amount of code data. Also, since one of the core pretraining objectives is Next Token Prediction, these models tends to learn surface-level syntactic patterns in code. However, this does not guarantee code comprehension ability i.e. the ability to capture the semantics of the code. In our opinion, this is the reason why these models often underperform on tasks that require deeper semantic understanding, such as code debugging and code optimization. To address this, we propose fine-tuning these models specifically for code comprehension tasks using large-scale datasets, enabling them to develop a more robust understanding of code semantics. We evaluate three code models of varying sizes on a suite of code comprehension tasks designed to assess semantic understanding beyond surface-level syntactic pattern matching. In particular, we analyze performance on the Subjectivity Grading Task and observe that model performance improves after fine-tuning on relevant downstream tasks. The most significant improvement is seen in the QWQ-32B model, where accuracy increases from 70% to 83.47%. A similar or explainable trend is observed across other models, clearly indicating an enhancement in code comprehension ability. Among the models studied, the DPO-fine-tuned Codestral-22B achieves the highest micro-accuracy of 87.66% on the Subjectivity Grading Task.
Related papers
- Code Representation Learning At Scale [75.04686476303436]
We fuel code representation learning with a vast amount of code data via a two-stage pretraining scheme.
We first train the encoders via a mix that leverages both randomness in masking language modeling and the structure aspect of programming language.
We then enhance the representations via contrastive learning with hard negative and hard positive constructed in an unsupervised manner.
arXiv Detail & Related papers (2024-02-02T22:19:15Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z) - Enriching Source Code with Contextual Data for Code Completion Models:
An Empirical Study [4.438873396405334]
We aim to answer whether making code easier to understand through using contextual data improves the performance of pre-trained code language models for the task of code completion.
For comments, we find that the models perform better in the presence of multi-line comments.
arXiv Detail & Related papers (2023-04-24T17:09:14Z) - ReCode: Robustness Evaluation of Code Generation Models [90.10436771217243]
We propose ReCode, a comprehensive robustness evaluation benchmark for code generation models.
We customize over 30 transformations specifically for code on docstrings, function and variable names, code syntax, and code format.
With human annotators, we verified that over 90% of the perturbed prompts do not alter the semantic meaning of the original prompt.
arXiv Detail & Related papers (2022-12-20T14:11:31Z) - Unveiling Code Pre-Trained Models: Investigating Syntax and Semantics Capacities [34.27541293716398]
We extensively analyze seven code models to investigate how code models represent code syntax and semantics.
We have developed four probing tasks to evaluate the models' abilities to learn code syntax and semantics.
Our results emphasize the strengths and weaknesses of various code models in mastering code syntax and semantics.
arXiv Detail & Related papers (2022-12-20T06:15:17Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
Existing code-to-text generation models produce only high-level summaries of code.
We conduct a human study to identify the criteria for high-quality explanatory docstring for code.
We present a multi-stage fine-tuning strategy and baseline models for the task.
arXiv Detail & Related papers (2022-11-25T18:05:44Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - Probing Pretrained Models of Source Code [14.904366372190943]
General pretrained models have been shown to outperform task-specific models in many applications.
We show that pretrained models of code indeed contain information about code syntactic structure and correctness, the notions of identifiers, data flow and correctnesss, and natural language naming.
arXiv Detail & Related papers (2022-02-16T10:26:14Z) - Can Machines Read Coding Manuals Yet? -- A Benchmark for Building Better
Language Models for Code Understanding [3.98345038769576]
We derive a set of benchmarks that assess code understanding based on tasks such as predicting the best answer to a question in a forum post.
We evaluate the performance of current state-of-the-art language models on these tasks and show that there is a significant improvement on each task from fine tuning.
arXiv Detail & Related papers (2021-09-15T17:42:44Z) - CLSEBERT: Contrastive Learning for Syntax Enhanced Code Pre-Trained
Model [23.947178895479464]
We propose CLSEBERT, a Constrastive Learning Framework for Syntax Enhanced Code Pre-Trained Model.
In the pre-training stage, we consider the code syntax and hierarchy contained in the Abstract Syntax Tree (AST)
We also introduce two novel pre-training objectives. One is to predict the edges between nodes in the abstract syntax tree, and the other is to predict the types of code tokens.
arXiv Detail & Related papers (2021-08-10T10:08:21Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.