Unveiling Code Pre-Trained Models: Investigating Syntax and Semantics Capacities
- URL: http://arxiv.org/abs/2212.10017v3
- Date: Wed, 17 Apr 2024 13:35:09 GMT
- Title: Unveiling Code Pre-Trained Models: Investigating Syntax and Semantics Capacities
- Authors: Wei Ma, Shangqing Liu, Mengjie Zhao, Xiaofei Xie, Wenhan Wang, Qiang Hu, Jie Zhang, Yang Liu,
- Abstract summary: We extensively analyze seven code models to investigate how code models represent code syntax and semantics.
We have developed four probing tasks to evaluate the models' abilities to learn code syntax and semantics.
Our results emphasize the strengths and weaknesses of various code models in mastering code syntax and semantics.
- Score: 34.27541293716398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Past research has examined how well these models grasp code syntax, yet their understanding of code semantics still needs to be explored. We extensively analyze seven code models to investigate how code models represent code syntax and semantics. This includes four prominent code pre-trained models (CodeBERT, GraphCodeBERT, CodeT5, and UnixCoder) and three large language models (StarCoder, CodeLlama, and CodeT5+). We have developed four probing tasks to evaluate the models' abilities to learn code syntax and semantics. These tasks focus on reconstructing code syntax and semantic structures-such as AST, CFG, CDG, and DDG - within the models' representation spaces. These structures are fundamental to understanding code. Additionally, we explore the role of syntax tokens in each token representation and the extended dependencies among code tokens. Furthermore, we examine the distribution of attention weights concerning code semantic structures. Through detailed analysis, our results emphasize the strengths and weaknesses of various code models in mastering code syntax and semantics. The findings reveal that these models are proficient in grasping code syntax, effectively capturing the relationships and roles of syntax tokens. However, their ability to encode code semantics shows more variability. This study enriches our understanding of the capabilities of code models in analyzing syntax and semantics. Our findings offer valuable insights for future code model enhancements, helping optimize their application across a range of code-related tasks.
Related papers
- Building A Coding Assistant via the Retrieval-Augmented Language Model [24.654428111628242]
We propose a retrieval-augmeNted language model (CONAN) to build a code assistant by mimicking the knowledge-seeking behaviors of humans during coding.
It consists of a code structure aware retriever (CONAN-R) and a dual-view code representation-based retrieval-augmented generation model (CONAN-G)
arXiv Detail & Related papers (2024-10-21T17:34:39Z) - Code Execution with Pre-trained Language Models [88.04688617516827]
Most pre-trained models for code intelligence ignore the execution trace and only rely on source code and syntactic structures.
We develop a mutation-based data augmentation technique to create a large-scale and realistic Python dataset and task for code execution.
We then present CodeExecutor, a Transformer model that leverages code execution pre-training and curriculum learning to enhance its semantic comprehension.
arXiv Detail & Related papers (2023-05-08T10:00:05Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
We propose a retrieval-augmented code completion framework, leveraging both lexical copying and referring to code with similar semantics by retrieval.
We evaluate our approach in the code completion task in Python and Java programming languages, achieving a state-of-the-art performance on CodeXGLUE benchmark.
arXiv Detail & Related papers (2022-03-15T08:25:08Z) - What Do They Capture? -- A Structural Analysis of Pre-Trained Language
Models for Source Code [32.345301158791045]
Pre-trained language models for source code have been proposed to model the context of code.
These models leverage masked pre-training and Transformer.
It is not clear why these models work and what feature correlations they can capture.
arXiv Detail & Related papers (2022-02-14T16:22:10Z) - CodeRetriever: Unimodal and Bimodal Contrastive Learning [128.06072658302165]
We propose the CodeRetriever model, which combines the unimodal and bimodal contrastive learning to train function-level code semantic representations.
For unimodal contrastive learning, we design a semantic-guided method to build positive code pairs based on the documentation and function name.
For bimodal contrastive learning, we leverage the documentation and in-line comments of code to build text-code pairs.
arXiv Detail & Related papers (2022-01-26T10:54:30Z) - Contrastive Learning for Source Code with Structural and Functional
Properties [66.10710134948478]
We present BOOST, a novel self-supervised model to focus pre-training based on the characteristics of source code.
We employ automated, structure-guided code transformation algorithms that generate functionally equivalent code that looks drastically different from the original one.
We train our model in a way that brings the functionally equivalent code closer and distinct code further through a contrastive learning objective.
arXiv Detail & Related papers (2021-10-08T02:56:43Z) - CLSEBERT: Contrastive Learning for Syntax Enhanced Code Pre-Trained
Model [23.947178895479464]
We propose CLSEBERT, a Constrastive Learning Framework for Syntax Enhanced Code Pre-Trained Model.
In the pre-training stage, we consider the code syntax and hierarchy contained in the Abstract Syntax Tree (AST)
We also introduce two novel pre-training objectives. One is to predict the edges between nodes in the abstract syntax tree, and the other is to predict the types of code tokens.
arXiv Detail & Related papers (2021-08-10T10:08:21Z) - GraphCodeBERT: Pre-training Code Representations with Data Flow [97.00641522327699]
We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code.
We use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables.
We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement.
arXiv Detail & Related papers (2020-09-17T15:25:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.