First-of-its-kind AI model for bioacoustic detection using a lightweight associative memory Hopfield neural network
- URL: http://arxiv.org/abs/2507.10642v1
- Date: Mon, 14 Jul 2025 16:37:20 GMT
- Title: First-of-its-kind AI model for bioacoustic detection using a lightweight associative memory Hopfield neural network
- Authors: Andrew Gascoyne, Wendy Lomas,
- Abstract summary: A growing issue within conservation bioacoustics is the task of analysing the vast amount of data generated from passive acoustic monitoring devices.<n>Our model formulation addresses the key issues encountered when using current AI models for bioacoustic analysis.<n>It uses associative memory via a transparent, explainable Hopfield neural network to store signals and detect similar signals.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A growing issue within conservation bioacoustics is the task of analysing the vast amount of data generated from the use of passive acoustic monitoring devices. In this paper, we present an alternative AI model which has the potential to help alleviate this problem. Our model formulation addresses the key issues encountered when using current AI models for bioacoustic analysis, namely the: limited training data available; environmental impact, particularly in energy consumption and carbon footprint of training and implementing these models; and associated hardware requirements. The model developed in this work uses associative memory via a transparent, explainable Hopfield neural network to store signals and detect similar signals which can then be used to classify species. Training is rapid ($3$\,ms), as only one representative signal is required for each target sound within a dataset. The model is fast, taking only $5.4$\,s to pre-process and classify all $10384$ publicly available bat recordings, on a standard Apple MacBook Air. The model is also lightweight with a small memory footprint of $144.09$\,MB of RAM usage. Hence, the low computational demands make the model ideal for use on a variety of standard personal devices with potential for deployment in the field via edge-processing devices. It is also competitively accurate, with up to $86\%$ precision on the dataset used to evaluate the model. In fact, we could not find a single case of disagreement between model and manual identification via expert field guides. Although a dataset of bat echolocation calls was chosen to demo this first-of-its-kind AI model, trained on only two representative calls, the model is not species specific. In conclusion, we propose an equitable AI model that has the potential to be a game changer for fast, lightweight, sustainable, transparent, explainable and accurate bioacoustic analysis.
Related papers
- TinyChirp: Bird Song Recognition Using TinyML Models on Low-power Wireless Acoustic Sensors [1.0790796076947324]
Monitoring biodiversity at scale is challenging.
detecting and identifying species in fine grained requires highly accurate machine learning (ML) methods.
deploying these models to low power devices requires novel compression techniques and model architectures.
arXiv Detail & Related papers (2024-07-31T08:57:42Z) - Explainable AI for Comparative Analysis of Intrusion Detection Models [20.683181384051395]
This research analyzes various machine learning models to the tasks of binary and multi-class classification for intrusion detection from network traffic.
We trained all models to the accuracy of 90% on the UNSW-NB15 dataset.
We also discover that Random Forest provides the best performance in terms of accuracy, time efficiency and robustness.
arXiv Detail & Related papers (2024-06-14T03:11:01Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Guaranteed Conformance of Neurosymbolic Models to Natural Constraints [4.598757178874836]
In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences.
We propose a method to guarantee this conformance.
We experimentally show that our constrained neurosymbolic models conform to specified models.
arXiv Detail & Related papers (2022-12-02T18:03:37Z) - Knowledge Transfer For On-Device Speech Emotion Recognition with Neural
Structured Learning [19.220263739291685]
Speech emotion recognition (SER) has been a popular research topic in human-computer interaction (HCI)
We propose a neural structured learning (NSL) framework through building synthesized graphs.
Our experiments demonstrate that training a lightweight SER model on the target dataset with speech samples and graphs can not only produce small SER models, but also enhance the model performance.
arXiv Detail & Related papers (2022-10-26T18:38:42Z) - A Comprehensive Study of Image Classification Model Sensitivity to
Foregrounds, Backgrounds, and Visual Attributes [58.633364000258645]
We call this dataset RIVAL10 consisting of roughly $26k$ instances over $10$ classes.
We evaluate the sensitivity of a broad set of models to noise corruptions in foregrounds, backgrounds and attributes.
In our analysis, we consider diverse state-of-the-art architectures (ResNets, Transformers) and training procedures (CLIP, SimCLR, DeiT, Adversarial Training)
arXiv Detail & Related papers (2022-01-26T06:31:28Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
We introduce a novel technique, DAAIN, to detect out-of-distribution (OOD) inputs and adversarial attacks (AA)
Our approach monitors the inner workings of a neural network and learns a density estimator of the activation distribution.
Our model can be trained on a single GPU making it compute efficient and deployable without requiring specialized accelerators.
arXiv Detail & Related papers (2021-05-30T22:07:13Z) - Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization [67.62847721118142]
We evaluate models' ability to capture the correct vulnerability signals to produce their predictions.
We measure the signal awareness of models using a new metric we propose- Signal-aware Recall (SAR)
The results show a sharp drop in the model's Recall from the high 90s to sub-60s with the new metric.
arXiv Detail & Related papers (2020-11-25T20:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.