Distributionally Robust Optimization with Adversarial Data Contamination
- URL: http://arxiv.org/abs/2507.10718v1
- Date: Mon, 14 Jul 2025 18:34:10 GMT
- Title: Distributionally Robust Optimization with Adversarial Data Contamination
- Authors: Shuyao Li, Ilias Diakonikolas, Jelena Diakonikolas,
- Abstract summary: We focus on optimizing Wasserstein-1 DRO objectives for generalized linear models with convex Lipschitz loss functions.<n>Our primary contribution lies in a novel modeling framework that integrates robustness against training data contamination with robustness against distributional shifts.<n>This work establishes the first rigorous guarantees, supported by efficient computation, for learning under the dual challenges of data contamination and distributional shifts.
- Score: 36.409282287280185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distributionally Robust Optimization (DRO) provides a framework for decision-making under distributional uncertainty, yet its effectiveness can be compromised by outliers in the training data. This paper introduces a principled approach to simultaneously address both challenges. We focus on optimizing Wasserstein-1 DRO objectives for generalized linear models with convex Lipschitz loss functions, where an $\epsilon$-fraction of the training data is adversarially corrupted. Our primary contribution lies in a novel modeling framework that integrates robustness against training data contamination with robustness against distributional shifts, alongside an efficient algorithm inspired by robust statistics to solve the resulting optimization problem. We prove that our method achieves an estimation error of $O(\sqrt{\epsilon})$ for the true DRO objective value using only the contaminated data under the bounded covariance assumption. This work establishes the first rigorous guarantees, supported by efficient computation, for learning under the dual challenges of data contamination and distributional shifts.
Related papers
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
We study the generalized linear bandit (GLB) problem, a contextual multi-armed bandit framework that extends the classical linear model by incorporating a non-linear link function.<n>GLBs are widely applicable to real-world scenarios, but their non-linear nature introduces significant challenges in achieving both computational and statistical efficiency.<n>We propose a jointly efficient algorithm that attains a nearly optimal regret bound with $mathcalO(1)$ time and space complexities per round.
arXiv Detail & Related papers (2025-07-16T02:24:21Z) - Statistical Inference for Conditional Group Distributionally Robust Optimization with Cross-Entropy Loss [9.054486124506521]
We study multi-source unsupervised domain adaptation, where labeled data are drawn from multiple source domains and only unlabeled data from a target domain.<n>We propose a novel Conditional Conditional Optimization (CG-DRO) framework that learns a classifier by minimizing the worst-case cross-entropy loss over the convex combinations of the conditional outcome distributions from the sources.<n>We establish fast statistical convergence rates for the estimator by constructing two surrogate minimax optimization problems that serve as theoretical bridges.
arXiv Detail & Related papers (2025-07-14T04:21:23Z) - Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls [8.720733751119994]
We study the underlying optimization problem, develop efficient solution algorithms, and demonstrate that the proposed method outperforms benchmark approaches on standard datasets.<n>Inspired by the former, we study the Wasserstein DR counterpart of ARO for logistic regression and show it admits a tractable convex optimization reformulation.
arXiv Detail & Related papers (2024-07-18T15:59:37Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.<n>We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.<n>Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Federated Distributionally Robust Optimization with Non-Convex Objectives: Algorithm and Analysis [21.913563167426872]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.<n>New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.<n> empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2023-07-25T01:56:57Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2022-10-14T07:39:13Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
Models of discrete-valued outcomes are easily misspecified if the data exhibit zero-inflation, overdispersion or contamination.
Here, we introduce a robust discrepancy-based Bayesian approach using the Total Variation Distance (TVD)
We empirically demonstrate that our approach is robust and significantly improves predictive performance on a range of simulated and real world data.
arXiv Detail & Related papers (2020-10-26T09:53:06Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
We propose a novel approach, Decomposed Adversarial Learned Inference (DALI)
DALI explicitly matches prior and conditional distributions in both data and code spaces.
We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets.
arXiv Detail & Related papers (2020-04-21T20:00:35Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.