Statistical Inference for Conditional Group Distributionally Robust Optimization with Cross-Entropy Loss
- URL: http://arxiv.org/abs/2507.09905v1
- Date: Mon, 14 Jul 2025 04:21:23 GMT
- Title: Statistical Inference for Conditional Group Distributionally Robust Optimization with Cross-Entropy Loss
- Authors: Zijian Guo, Zhenyu Wang, Yifan Hu, Francis Bach,
- Abstract summary: We study multi-source unsupervised domain adaptation, where labeled data are drawn from multiple source domains and only unlabeled data from a target domain.<n>We propose a novel Conditional Conditional Optimization (CG-DRO) framework that learns a classifier by minimizing the worst-case cross-entropy loss over the convex combinations of the conditional outcome distributions from the sources.<n>We establish fast statistical convergence rates for the estimator by constructing two surrogate minimax optimization problems that serve as theoretical bridges.
- Score: 9.054486124506521
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In multi-source learning with discrete labels, distributional heterogeneity across domains poses a central challenge to developing predictive models that transfer reliably to unseen domains. We study multi-source unsupervised domain adaptation, where labeled data are drawn from multiple source domains and only unlabeled data from a target domain. To address potential distribution shifts, we propose a novel Conditional Group Distributionally Robust Optimization (CG-DRO) framework that learns a classifier by minimizing the worst-case cross-entropy loss over the convex combinations of the conditional outcome distributions from the sources. To solve the resulting minimax problem, we develop an efficient Mirror Prox algorithm, where we employ a double machine learning procedure to estimate the risk function. This ensures that the errors of the machine learning estimators for the nuisance models enter only at higher-order rates, thereby preserving statistical efficiency under covariate shift. We establish fast statistical convergence rates for the estimator by constructing two surrogate minimax optimization problems that serve as theoretical bridges. A distinguishing challenge for CG-DRO is the emergence of nonstandard asymptotics: the empirical estimator may fail to converge to a standard limiting distribution due to boundary effects and system instability. To address this, we introduce a perturbation-based inference procedure that enables uniformly valid inference, including confidence interval construction and hypothesis testing.
Related papers
- Distributionally Robust Optimization with Adversarial Data Contamination [36.409282287280185]
We focus on optimizing Wasserstein-1 DRO objectives for generalized linear models with convex Lipschitz loss functions.<n>Our primary contribution lies in a novel modeling framework that integrates robustness against training data contamination with robustness against distributional shifts.<n>This work establishes the first rigorous guarantees, supported by efficient computation, for learning under the dual challenges of data contamination and distributional shifts.
arXiv Detail & Related papers (2025-07-14T18:34:10Z) - Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Bridging Internal Probability and Self-Consistency for Effective and Efficient LLM Reasoning [53.25336975467293]
We present the first theoretical error decomposition analysis of methods such as perplexity and self-consistency.<n>Our analysis reveals a fundamental trade-off: perplexity methods suffer from substantial model error due to the absence of a proper consistency function.<n>We propose Reasoning-Pruning Perplexity Consistency (RPC), which integrates perplexity with self-consistency, and Reasoning Pruning, which eliminates low-probability reasoning paths.
arXiv Detail & Related papers (2025-02-01T18:09:49Z) - Learning from Noisy Labels via Conditional Distributionally Robust Optimization [5.85767711644773]
crowdsourcing has emerged as a practical solution for labeling large datasets.
It presents a significant challenge in learning accurate models due to noisy labels from annotators with varying levels of expertise.
arXiv Detail & Related papers (2024-11-26T05:03:26Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2023-07-25T01:56:57Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2022-10-14T07:39:13Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
We first establish a generalization bound that explicitly considers the adaptivity gap.
We propose effective gap estimation methods for guiding the selection of a better hypothesis for the target.
The other method is minimizing the gap directly by adapting model parameters using online target samples.
arXiv Detail & Related papers (2022-08-18T06:42:49Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
We present a comprehensive minimax analysis from a causal perspective.
We propose an efficient algorithm to search for the subset with minimal worst-case risk.
The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
arXiv Detail & Related papers (2021-07-05T09:07:29Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.