IoT Malware Network Traffic Detection using Deep Learning and GraphSAGE Models
- URL: http://arxiv.org/abs/2507.10758v1
- Date: Mon, 14 Jul 2025 19:36:04 GMT
- Title: IoT Malware Network Traffic Detection using Deep Learning and GraphSAGE Models
- Authors: Nikesh Prajapati, Bimal Karki, Saroj Gopali, Akbar Siami Namin,
- Abstract summary: This paper intends to detect IoT malicious attacks through deep learning models.<n>Models are based on GraphSAGE, Bidirectional encoder representations from transformers (BERT), Temporal Convolutional Network (TCN) as well as Multi-Head Attention.
- Score: 0.3749861135832072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper intends to detect IoT malicious attacks through deep learning models and demonstrates a comprehensive evaluation of the deep learning and graph-based models regarding malicious network traffic detection. The models particularly are based on GraphSAGE, Bidirectional encoder representations from transformers (BERT), Temporal Convolutional Network (TCN) as well as Multi-Head Attention, together with Bidirectional Long Short-Term Memory (BI-LSTM) Multi-Head Attention and BI-LSTM and LSTM models. The chosen models demonstrated great performance to model temporal patterns and detect feature significance. The observed performance are mainly due to the fact that IoT system traffic patterns are both sequential and diverse, leaving a rich set of temporal patterns for the models to learn. Experimental results showed that BERT maintained the best performance. It achieved 99.94% accuracy rate alongside high precision and recall, F1-score and AUC-ROC score of 99.99% which demonstrates its capabilities through temporal dependency capture. The Multi-Head Attention offered promising results by providing good detection capabilities with interpretable results. On the other side, the Multi-Head Attention model required significant processing time like BI-LSTM variants. The GraphSAGE model achieved good accuracy while requiring the shortest training time but yielded the lowest accuracy, precision, and F1 score compared to the other models
Related papers
- TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis [12.034816114258803]
TSPulse is an ultra-compact time-series pre-trained model with only 1M parameters.<n>It performs strongly across classification, anomaly detection, imputation, and retrieval tasks.<n>Results are achieved with just 1M parameters (10-100X smaller than existing SOTA models)
arXiv Detail & Related papers (2025-05-19T12:18:53Z) - MSTIM: A MindSpore-Based Model for Traffic Flow Prediction [2.4604039212534508]
This paper proposes a multi-scale time series information modelling model MSTIM based on the Mindspore framework.<n>It integrates long and short-term memory networks (LSTMs), convolutional neural networks (CNN) and the attention mechanism to improve the modelling accuracy and stability.<n>The experimental results show that the MSTIM model achieves better results in the metrics of Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE)
arXiv Detail & Related papers (2025-04-18T09:19:51Z) - IncepFormerNet: A multi-scale multi-head attention network for SSVEP classification [12.935583315234553]
This study proposes a new model called IncepFormerNet, which is a hybrid of the Inception and Transformer architectures.<n>IncepFormerNet adeptly extracts multi-scale temporal information from time series data using parallel convolution kernels of varying sizes.<n>It takes advantage of filter bank techniques to extract features based on the spectral characteristics of SSVEP data.
arXiv Detail & Related papers (2025-02-04T13:04:03Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Modeling IoT Traffic Patterns: Insights from a Statistical Analysis of an MTC Dataset [1.2289361708127877]
Internet-of-Things (IoT) is rapidly expanding, connecting numerous devices and becoming integral to our daily lives.
Effective IoT traffic management requires modeling and predicting intrincate machine-type communication (MTC) dynamics.
We perform a comprehensive statistical analysis of the MTC traffic utilizing goodness-of-fit tests, including well-established tests such as Kolmogorov-Smirnov, Anderson-Darling, chi-squared, and root mean square error.
arXiv Detail & Related papers (2024-09-03T14:24:18Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Tiny Time Mixers (TTMs): Fast Pre-trained Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series [11.635608108358575]
We introduce Tiny Time Mixers (TTM), a compact model with effective transfer learning capabilities, trained exclusively on public TS datasets.
TTM incorporates innovations like adaptive patching, diverse resolution sampling, and resolution prefix tuning to handle pre-training on varied dataset resolutions.
It outperforms existing popular benchmarks in zero/few-shot forecasting by (4-40%), while reducing computational requirements significantly.
arXiv Detail & Related papers (2024-01-08T15:21:21Z) - Attention-based Spatial-Temporal Graph Neural ODE for Traffic Prediction [3.4806267677524896]
We propose attention-based graph neural ODE (AST) that explicitly learns the dynamics of the traffic system.
Our model aggregates traffic patterns of different periods and has satisfactory performance on two real-world traffic data sets.
arXiv Detail & Related papers (2023-05-01T00:58:48Z) - Edge-Varying Fourier Graph Networks for Multivariate Time Series
Forecasting [46.76885997673142]
We build an efficient graph convolutional network for time-series variables.
A high-efficiency scale-free parameter learning scheme is derived for MTS analysis and forecasting.
Experiments show that EV-FGN outperforms state-of-the-art methods on seven real-world MTS datasets.
arXiv Detail & Related papers (2022-10-06T17:50:07Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
We propose a novel solution named TransSTAM, which leverages Transformer to model both the appearance features of each object and the spatial-temporal relationships among objects.
The proposed method is evaluated on multiple public benchmarks including MOT16, MOT17, and MOT20, and it achieves a clear performance improvement in both IDF1 and HOTA.
arXiv Detail & Related papers (2022-05-31T01:19:18Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.