Warehouse Spatial Question Answering with LLM Agent
- URL: http://arxiv.org/abs/2507.10778v1
- Date: Mon, 14 Jul 2025 20:05:55 GMT
- Title: Warehouse Spatial Question Answering with LLM Agent
- Authors: Hsiang-Wei Huang, Jen-Hao Cheng, Kuang-Ming Chen, Cheng-Yen Yang, Bahaa Alattar, Yi-Ru Lin, Pyongkun Kim, Sangwon Kim, Kwangju Kim, Chung-I Huang, Jenq-Neng Hwang,
- Abstract summary: We propose a LLM agent system with strong and advanced spatial reasoning ability.<n>Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction.<n>Our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation.
- Score: 18.821295196340383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial understanding has been a challenging task for existing Multi-modal Large Language Models~(MLLMs). Previous methods leverage large-scale MLLM finetuning to enhance MLLM's spatial understanding ability. In this paper, we present a data-efficient approach. We propose a LLM agent system with strong and advanced spatial reasoning ability, which can be used to solve the challenging spatial question answering task in complex indoor warehouse scenarios. Our system integrates multiple tools that allow the LLM agent to conduct spatial reasoning and API tools interaction to answer the given complicated spatial question. Extensive evaluations on the 2025 AI City Challenge Physical AI Spatial Intelligence Warehouse dataset demonstrate that our system achieves high accuracy and efficiency in tasks such as object retrieval, counting, and distance estimation. The code is available at: https://github.com/hsiangwei0903/SpatialAgent
Related papers
- Can Large Language Models Integrate Spatial Data? Empirical Insights into Reasoning Strengths and Computational Weaknesses [11.330846631937671]
We explore the application of large language models (LLMs) to empower domain experts in integrating large, heterogeneous, and noisy urban spatial datasets.<n>We show that while LLMs exhibit spatial reasoning capabilities, they struggle to connect the macro-scale environment with the relevant computational geometry tasks.<n>We then adapt a review-and-refine method, which proves remarkably effective in correcting erroneous initial responses while preserving accurate responses.
arXiv Detail & Related papers (2025-08-07T03:44:20Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - Planning without Search: Refining Frontier LLMs with Offline Goal-Conditioned RL [62.984693936073974]
Large language models (LLMs) excel in tasks like question answering and dialogue.<n>Complex tasks requiring interaction, such as negotiation and persuasion, require additional long-horizon reasoning and planning.<n>We propose a novel approach that uses goal-conditioned value functions to guide the reasoning of LLM agents.
arXiv Detail & Related papers (2025-05-23T16:51:54Z) - SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding [64.15606979785355]
Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored.<n>This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities?
arXiv Detail & Related papers (2025-05-22T17:59:03Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.<n>We propose a MLLM (OmniGeo) tailored to geospatial applications.<n>By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - LLMs for Robotic Object Disambiguation [21.101902684740796]
Our study reveals the LLM's aptitude for solving complex decision making challenges.
A pivotal focus of our research is the object disambiguation capability of LLMs.
We have developed a few-shot prompt engineering system to improve the LLM's ability to pose disambiguating queries.
arXiv Detail & Related papers (2024-01-07T04:46:23Z) - Enhancing the Spatial Awareness Capability of Multi-Modal Large Language
Model [25.86351431223383]
The Multi-Modal Large Language Model (MLLM) is an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data.
This paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries.
arXiv Detail & Related papers (2023-10-31T10:57:35Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
Large language models (LLMs) encode a vast amount of world knowledge acquired from massive text datasets.
LLMs can assist an embodied agent in solving complex sequential decision making tasks by providing high-level instructions.
We propose When2Ask, a reinforcement learning based approach that learns when it is necessary to query LLMs for high-level instructions.
arXiv Detail & Related papers (2023-06-06T11:49:09Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.