SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding
- URL: http://arxiv.org/abs/2505.17012v1
- Date: Thu, 22 May 2025 17:59:03 GMT
- Title: SpatialScore: Towards Unified Evaluation for Multimodal Spatial Understanding
- Authors: Haoning Wu, Xiao Huang, Yaohui Chen, Ya Zhang, Yanfeng Wang, Weidi Xie,
- Abstract summary: Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored.<n>This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities?
- Score: 64.15606979785355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) have achieved impressive success in question-answering tasks, yet their capabilities for spatial understanding are less explored. This work investigates a critical question: do existing MLLMs possess 3D spatial perception and understanding abilities? Concretely, we make the following contributions in this paper: (i) we introduce VGBench, a benchmark specifically designed to assess MLLMs for visual geometry perception, e.g., camera pose and motion estimation; (ii) we propose SpatialScore, the most comprehensive and diverse multimodal spatial understanding benchmark to date, integrating VGBench with relevant data from the other 11 existing datasets. This benchmark comprises 28K samples across various spatial understanding tasks, modalities, and QA formats, along with a carefully curated challenging subset, SpatialScore-Hard; (iii) we develop SpatialAgent, a novel multi-agent system incorporating 9 specialized tools for spatial understanding, supporting both Plan-Execute and ReAct reasoning paradigms; (iv) we conduct extensive evaluations to reveal persistent challenges in spatial reasoning while demonstrating the effectiveness of SpatialAgent. We believe SpatialScore will offer valuable insights and serve as a rigorous benchmark for the next evolution of MLLMs.
Related papers
- SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks [53.611256895338585]
We introduce SIRI-Bench, a benchmark designed to evaluate Vision-Language Models' spatial intelligence through video-based reasoning tasks.<n> SIRI-Bench comprises nearly 1K video-question-answer triplets, where each problem is embedded in a realistic 3D scene and captured by video.<n>To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine.
arXiv Detail & Related papers (2025-06-17T13:40:00Z) - ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models [47.237216851265316]
Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content.<n>Current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints.<n>We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation.
arXiv Detail & Related papers (2025-05-27T17:59:26Z) - Multi-SpatialMLLM: Multi-Frame Spatial Understanding with Multi-Modal Large Language Models [70.41727912081463]
Multi-modal large language models (MLLMs) have rapidly advanced in visual tasks, yet their spatial understanding remains limited to single images.<n>We propose a framework to equip MLLMs with robust multi-frame spatial understanding by integrating depth perception, visual correspondence, and dynamic perception.<n>Our model, Multi-SpatialMLLM, achieves significant gains over baselines and proprietary systems, demonstrating scalable, generalizable multi-frame reasoning.
arXiv Detail & Related papers (2025-05-22T17:59:39Z) - Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space [44.42918139949761]
We propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of state-of-the-art (SOTA) foundation models in open 3D space.<n>Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator.
arXiv Detail & Related papers (2025-03-14T05:35:38Z) - EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents [63.43699771428243]
EmbodiedBench is an extensive benchmark designed to evaluate vision-driven embodied agents.<n>We evaluated 24 leading proprietary and open-source MLLMs within EmbodiedBench.<n> MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9% on average.
arXiv Detail & Related papers (2025-02-13T18:11:34Z) - EmbodiedEval: Evaluate Multimodal LLMs as Embodied Agents [57.4686961979566]
EmbodiedEval is a comprehensive and interactive evaluation benchmark for MLLMs with embodied tasks.<n>It covers a broad spectrum of existing embodied AI tasks with significantly enhanced diversity.<n>We evaluated the state-of-the-art MLLMs on EmbodiedEval and found that they have a significant shortfall compared to human level on embodied tasks.
arXiv Detail & Related papers (2025-01-21T03:22:10Z) - MOSABench: Multi-Object Sentiment Analysis Benchmark for Evaluating Multimodal Large Language Models Understanding of Complex Image [16.040813949620958]
We introduce MOSABench, a novel evaluation dataset designed specifically for multi-object sentiment analysis.<n>Key innovations in MOSABench include distance-based target annotation, post-processing for evaluation to standardize outputs, and an improved scoring mechanism.<n>This research underscores the need for MLLMs to enhance accuracy in complex, multi-object sentiment analysis tasks.
arXiv Detail & Related papers (2024-11-25T09:00:36Z) - GSR-BENCH: A Benchmark for Grounded Spatial Reasoning Evaluation via Multimodal LLMs [3.2688425993442696]
The ability to understand and reason about spatial relationships between objects in images is an important component of visual reasoning.
We extend the previously released What'sUp dataset and propose a novel comprehensive evaluation for spatial relationship understanding.
arXiv Detail & Related papers (2024-06-19T06:15:26Z) - MMRel: A Relation Understanding Benchmark in the MLLM Era [72.95901753186227]
Multi-Modal Relation Understanding (MMRel) is a benchmark that features large-scale, high-quality, and diverse data on inter-object relations.
MMRel is ideal for evaluating MLLMs on relation understanding, as well as for fine-tuning MLLMs to enhance relation comprehension capability.
arXiv Detail & Related papers (2024-06-13T13:51:59Z) - Enhancing the Spatial Awareness Capability of Multi-Modal Large Language
Model [25.86351431223383]
The Multi-Modal Large Language Model (MLLM) is an extension of the Large Language Model (LLM) equipped with the capability to receive and infer multi-modal data.
This paper proposes using more precise spatial position information between objects to guide MLLM in providing more accurate responses to user-related inquiries.
arXiv Detail & Related papers (2023-10-31T10:57:35Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.