論文の概要: Modernizing CNN-based Weather Forecast Model towards Higher Computational Efficiency
- arxiv url: http://arxiv.org/abs/2507.10893v1
- Date: Tue, 15 Jul 2025 01:16:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.942429
- Title: Modernizing CNN-based Weather Forecast Model towards Higher Computational Efficiency
- Title(参考訳): 計算効率向上に向けたCNNによる天気予報モデルの近代化
- Authors: Minjong Cheon, Eunhan Goo, Su-Hyeon Shin, Muhammad Ahmed, Hyungjun Kim,
- Abstract要約: グローバル気象予報のための近代化されたCNNモデルを提案する。
KAI-a にはスケール不変アーキテクチャと InceptionNeXt ベースのブロックが組み込まれている。
ERA5の日次データセットで67の大気変数でトレーニングされ、1つのNVIDIA L40s GPUでわずか12時間でトレーニングが完了する。
- 参考スコア(独自算出の注目度): 5.781137818421603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, AI-based weather forecast models have achieved impressive advances. These models have reached accuracy levels comparable to traditional NWP systems, marking a significant milestone in data-driven weather prediction. However, they mostly leverage Transformer-based architectures, which often leads to high training complexity and resource demands due to the massive parameter sizes. In this study, we introduce a modernized CNN-based model for global weather forecasting that delivers competitive accuracy while significantly reducing computational requirements. To present a systematic modernization roadmap, we highlight key architectural enhancements across multiple design scales from an earlier CNN-based approach. KAI-a incorporates a scale-invariant architecture and InceptionNeXt-based blocks within a geophysically-aware design, tailored to the structure of Earth system data. Trained on the ERA5 daily dataset with 67 atmospheric variables, the model contains about 7 million parameters and completes training in just 12 hours on a single NVIDIA L40s GPU. Our evaluation shows that KAI-a matches the performance of state-of-the-art models in medium-range weather forecasting, while offering a significantly lightweight design. Furthermore, case studies on the 2018 European heatwave and the East Asian summer monsoon demonstrate KAI-a's robust skill in capturing extreme events, reinforcing its practical utility.
- Abstract(参考訳): 近年、AIベースの天気予報モデルは目覚ましい進歩を遂げている。
これらのモデルは従来のNWPシステムに匹敵する精度に達しており、データ駆動の天気予報において重要なマイルストーンとなっている。
しかし、主にTransformerベースのアーキテクチャを活用しており、大規模なパラメータサイズのため、トレーニングの複雑さとリソース要求の増大につながることが多い。
本研究では,グローバル気象予報のためのCNNモデルを提案する。
体系的なモダナイゼーションのロードマップを示すため、以前のCNNベースのアプローチから、複数の設計スケールにわたる重要なアーキテクチャ拡張を強調します。
KAI-aはスケール不変アーキテクチャとInceptionNeXtベースのブロックを、地球系データの構造に合わせて物理的に認識した設計に組み込んでいる。
67の大気変数を持つERA5毎日のデータセットに基づいてトレーニングされたこのモデルは、約700万のパラメータを含み、1つのNVIDIA L40s GPUでわずか12時間でトレーニングを完了する。
評価の結果,KAI-aは中距離気象予報における最先端モデルの性能と同等であり,軽量な設計が可能であることがわかった。
さらに、2018年の欧州熱波と東アジア夏モンスーンのケーススタディでは、カイアが極端な出来事を捉え、実用性を補強する堅牢な技術が実証されている。
関連論文リスト
- Accurate Prediction of Temperature Indicators in Eastern China Using a Multi-Scale CNN-LSTM-Attention model [0.0]
マルチスケールの畳み込み型CNN-LSTM-Attentionアーキテクチャに基づく天気予報モデルを提案する。
このモデルは、畳み込みニューラルネットワーク(CNN)、Long Short-Term Memory(LSTM)ネットワーク、およびアテンションメカニズムを統合している。
実験結果から, モデルが高精度に温度変動を予測できることが示唆された。
論文 参考訳(メタデータ) (2024-12-11T00:42:31Z) - Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
本稿では,異なる設計選択がディープラーニングに基づく天気予報システムに与える影響を系統的に分析する。
UNet、完全畳み込みアーキテクチャ、トランスフォーマーベースモデルなどの固定グリッドアーキテクチャについて検討する。
固定グリッドモデルの強靭な性能とグリッド不変アーキテクチャの柔軟性を組み合わせたハイブリッドシステムを提案する。
論文 参考訳(メタデータ) (2024-10-09T22:25:50Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をトレーニングデータセットを超える微細な時間スケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
また、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークも導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - KARINA: An Efficient Deep Learning Model for Global Weather Forecast [2.9687381456164004]
カリナは計算資源が大幅に少ない高解像度の予測精度を達成している。
カリナはConvNext、SENet、Geocyclic Paddingを統合し、2.5degの解像度で天気予報を強化する。
カリナは気象予報の精度を新たなベンチマークで設定し、ECMWF S2Sのような既存のモデルを最大7日間のリードタイムで上回った。
論文 参考訳(メタデータ) (2024-03-13T06:41:37Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z) - Improving data-driven global weather prediction using deep convolutional
neural networks on a cubed sphere [7.918783985810551]
深層畳み込みニューラルネットワーク(CNN)を用いたデータ駆動型世界天気予報フレームワークを提案する。
このフレームワークの新しい開発には、オフラインの体積保存的マッピングから立方体球格子へのマッピングが含まれる。
我々のモデルでは、入力された大気状態の少ない変数から複雑な表面温度パターンを予測することができる。
論文 参考訳(メタデータ) (2020-03-15T19:57:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。