Diffusion Decoding for Peptide De Novo Sequencing
- URL: http://arxiv.org/abs/2507.10955v1
- Date: Tue, 15 Jul 2025 03:38:01 GMT
- Title: Diffusion Decoding for Peptide De Novo Sequencing
- Authors: Chi-en Amy Tai, Alexander Wong,
- Abstract summary: This paper investigates using diffusion decoders adapted for the discrete data domain.<n>These decoders provide a different approach, allowing sequence generation to start from any peptide segment.<n>Although peptide precision and recall were still 0, the best diffusion decoder design with the DINOISER loss function obtained a statistically significant improvement in amino acid recall by 0.373.
- Score: 71.91773485443125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Peptide de novo sequencing is a method used to reconstruct amino acid sequences from tandem mass spectrometry data without relying on existing protein sequence databases. Traditional deep learning approaches, such as Casanovo, mainly utilize autoregressive decoders and predict amino acids sequentially. Subsequently, they encounter cascading errors and fail to leverage high-confidence regions effectively. To address these issues, this paper investigates using diffusion decoders adapted for the discrete data domain. These decoders provide a different approach, allowing sequence generation to start from any peptide segment, thereby enhancing prediction accuracy. We experiment with three different diffusion decoder designs, knapsack beam search, and various loss functions. We find knapsack beam search did not improve performance metrics and simply replacing the transformer decoder with a diffusion decoder lowered performance. Although peptide precision and recall were still 0, the best diffusion decoder design with the DINOISER loss function obtained a statistically significant improvement in amino acid recall by 0.373 compared to the baseline autoregressive decoder-based Casanovo model. These findings highlight the potential of diffusion decoders to not only enhance model sensitivity but also drive significant advancements in peptide de novo sequencing.
Related papers
- Geometry-Preserving Encoder/Decoder in Latent Generative Models [13.703752179071333]
We introduce a novel encoder/decoder framework with theoretical properties distinct from those of the VAE.<n>We demonstrate the significant advantages of this geometry-preserving encoder in the training process of both the encoder and decoder.
arXiv Detail & Related papers (2025-01-16T23:14:34Z) - Estimating the Decoding Failure Rate of Binary Regular Codes Using Iterative Decoding [84.0257274213152]
We propose a new technique to provide accurate estimates of the DFR of a two-iterations (parallel) bit flipping decoder.<n>We validate our results, providing comparisons of the modeled and simulated weight of the syndrome, incorrectly-guessed error bit distribution at the end of the first iteration, and two-itcrypteration Decoding Failure Rates (DFR)
arXiv Detail & Related papers (2024-01-30T11:40:24Z) - ContraNovo: A Contrastive Learning Approach to Enhance De Novo Peptide
Sequencing [70.12220342151113]
ContraNovo is a pioneering algorithm that leverages contrastive learning to extract the relationship between spectra and peptides.
ContraNovo consistently outshines contemporary state-of-the-art solutions.
arXiv Detail & Related papers (2023-12-18T12:49:46Z) - Graph Neural Networks for Enhanced Decoding of Quantum LDPC Codes [6.175503577352742]
We propose a differentiable iterative decoder for quantum low-density parity-check (LDPC) codes.
The proposed algorithm is composed of classical belief propagation (BP) decoding stages and intermediate graph neural network (GNN) layers.
arXiv Detail & Related papers (2023-10-26T19:56:25Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - Diffusion-Based Speech Enhancement with Joint Generative and Predictive
Decoders [38.78712921188612]
We propose a unified system that use jointly generative and predictive decoders across two levels.
Experiments conducted on the Voice-Bank dataset demonstrate that incorporating predictive information leads to faster decoding and higher PESQ scores.
arXiv Detail & Related papers (2023-05-18T06:10:49Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.