Denoising Diffusion Error Correction Codes
- URL: http://arxiv.org/abs/2209.13533v1
- Date: Fri, 16 Sep 2022 11:00:50 GMT
- Title: Denoising Diffusion Error Correction Codes
- Authors: Yoni Choukroun and Lior Wolf
- Abstract summary: Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
- Score: 92.10654749898927
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Error correction code (ECC) is an integral part of the physical communication
layer, ensuring reliable data transfer over noisy channels. Recently, neural
decoders have demonstrated their advantage over classical decoding techniques.
However, recent state-of-the-art neural decoders suffer from high complexity
and lack the important iterative scheme characteristic of many legacy decoders.
In this work, we propose to employ denoising diffusion models for the soft
decoding of linear codes at arbitrary block lengths. Our framework models the
forward channel corruption as a series of diffusion steps that can be reversed
iteratively. Three contributions are made: (i) a diffusion process suitable for
the decoding setting is introduced, (ii) the neural diffusion decoder is
conditioned on the number of parity errors, which indicates the level of
corruption at a given step, (iii) a line search procedure based on the code's
syndrome obtains the optimal reverse diffusion step size. The proposed approach
demonstrates the power of diffusion models for ECC and is able to achieve state
of the art accuracy, outperforming the other neural decoders by sizable
margins, even for a single reverse diffusion step.
Related papers
- Factor Graph Optimization of Error-Correcting Codes for Belief Propagation Decoding [62.25533750469467]
Low-Density Parity-Check (LDPC) codes possess several advantages over other families of codes.
The proposed approach is shown to outperform the decoding performance of existing popular codes by orders of magnitude.
arXiv Detail & Related papers (2024-06-09T12:08:56Z) - Learning Linear Block Error Correction Codes [62.25533750469467]
We propose for the first time a unified encoder-decoder training of binary linear block codes.
We also propose a novel Transformer model in which the self-attention masking is performed in a differentiable fashion for the efficient backpropagation of the code gradient.
arXiv Detail & Related papers (2024-05-07T06:47:12Z) - Friendly Attacks to Improve Channel Coding Reliability [0.33993877661368754]
"Friendly attack" aims at enhancing the performance of error correction channel codes.
Inspired by the concept of adversarial attacks, our method leverages the idea of introducing slight perturbations to the neural network input.
We demonstrate that the proposed friendly attack method can improve the reliability across different channels, modulations, codes, and decoders.
arXiv Detail & Related papers (2024-01-25T13:46:21Z) - Graph Neural Networks for Enhanced Decoding of Quantum LDPC Codes [6.175503577352742]
We propose a differentiable iterative decoder for quantum low-density parity-check (LDPC) codes.
The proposed algorithm is composed of classical belief propagation (BP) decoding stages and intermediate graph neural network (GNN) layers.
arXiv Detail & Related papers (2023-10-26T19:56:25Z) - High Perceptual Quality Wireless Image Delivery with Denoising Diffusion
Models [10.763194436114194]
We consider the image transmission problem over a noisy wireless channel via deep learning-based joint source-channel coding (DeepJSCC)
We introduce a novel scheme that utilizes the range-null space decomposition of the target image.
We demonstrate significant improvements in distortion and perceptual quality of reconstructed images compared to standard DeepJSCC and the state-of-the-art generative learning-based method.
arXiv Detail & Related papers (2023-09-27T16:30:59Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Error Correction Code Transformer [92.10654749898927]
We propose to extend for the first time the Transformer architecture to the soft decoding of linear codes at arbitrary block lengths.
We encode each channel's output dimension to high dimension for better representation of the bits information to be processed separately.
The proposed approach demonstrates the extreme power and flexibility of Transformers and outperforms existing state-of-the-art neural decoders by large margins at a fraction of their time complexity.
arXiv Detail & Related papers (2022-03-27T15:25:58Z) - Adversarial Neural Networks for Error Correcting Codes [76.70040964453638]
We introduce a general framework to boost the performance and applicability of machine learning (ML) models.
We propose to combine ML decoders with a competing discriminator network that tries to distinguish between codewords and noisy words.
Our framework is game-theoretic, motivated by generative adversarial networks (GANs)
arXiv Detail & Related papers (2021-12-21T19:14:44Z) - Infomax Neural Joint Source-Channel Coding via Adversarial Bit Flip [41.28049430114734]
We propose a novel regularization method called Infomax Adversarial-Bit-Flip (IABF) to improve the stability and robustness of the neural joint source-channel coding scheme.
Our IABF can achieve state-of-the-art performances on both compression and error correction benchmarks and outperform the baselines by a significant margin.
arXiv Detail & Related papers (2020-04-03T10:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.