Human-Guided Shade Artifact Suppression in CBCT-to-MDCT Translation via Schrödinger Bridge with Conditional Diffusion
- URL: http://arxiv.org/abs/2507.11025v1
- Date: Tue, 15 Jul 2025 06:44:53 GMT
- Title: Human-Guided Shade Artifact Suppression in CBCT-to-MDCT Translation via Schrödinger Bridge with Conditional Diffusion
- Authors: Sung Ho Kang, Hyun-Cheol Park,
- Abstract summary: We present a novel framework for CBCT-to-MDCT translation, grounded in the Schrodinger Bridge (SB) formulation.<n>Our approach explicitly enforces boundary consistency between CBCT inputs and pseudo targets, ensuring both anatomical fidelity and perceptual controllability.
- Score: 1.5869861104370917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel framework for CBCT-to-MDCT translation, grounded in the Schrodinger Bridge (SB) formulation, which integrates GAN-derived priors with human-guided conditional diffusion. Unlike conventional GANs or diffusion models, our approach explicitly enforces boundary consistency between CBCT inputs and pseudo targets, ensuring both anatomical fidelity and perceptual controllability. Binary human feedback is incorporated via classifier-free guidance (CFG), effectively steering the generative process toward clinically preferred outcomes. Through iterative refinement and tournament-based preference selection, the model internalizes human preferences without relying on a reward model. Subtraction image visualizations reveal that the proposed method selectively attenuates shade artifacts in key anatomical regions while preserving fine structural detail. Quantitative evaluations further demonstrate superior performance across RMSE, SSIM, LPIPS, and Dice metrics on clinical datasets -- outperforming prior GAN- and fine-tuning-based feedback methods -- while requiring only 10 sampling steps. These findings underscore the effectiveness and efficiency of our framework for real-time, preference-aligned medical image translation.
Related papers
- Modality Translation and Registration of MR and Ultrasound Images Using Diffusion Models [7.512221808783586]
Multimodal MR-US registration is critical for prostate cancer diagnosis.<n>Existing methods fail to align critical boundaries while being overly sensitive to irrelevant details.<n>We propose an anatomically coherent modality translation network based on a hierarchical feature disentanglement design.
arXiv Detail & Related papers (2025-06-01T14:10:06Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - CriDiff: Criss-cross Injection Diffusion Framework via Generative Pre-train for Prostate Segmentation [60.61972883059688]
CriDiff is a two-stage feature injecting framework with a Crisscross Injection Strategy (CIS) and a Generative Pre-train (GP) approach for prostate segmentation.
To effectively learn multi-level of edge features and non-edge features, we proposed two parallel conditioners in the CIS.
The GP approach eases the inconsistency between the images features and the diffusion model without adding additional parameters.
arXiv Detail & Related papers (2024-06-20T10:46:50Z) - CT-based brain ventricle segmentation via diffusion Schrödinger Bridge without target domain ground truths [0.9720086191214947]
Efficient and accurate brain ventricle segmentation from clinical CT scans is critical for emergency surgeries like ventriculostomy.
We introduce a novel uncertainty-aware ventricle segmentation technique without the need of CT segmentation ground truths.
Our method employs the diffusion Schr"odinger Bridge and an attention recurrent residual U-Net to capitalize on unpaired CT and MRI scans.
arXiv Detail & Related papers (2024-05-28T15:17:58Z) - Towards Clinician-Preferred Segmentation: Leveraging Human-in-the-Loop for Test Time Adaptation in Medical Image Segmentation [10.65123164779962]
Deep learning-based medical image segmentation models often face performance degradation when deployed across various medical centers.
We propose a novel Human-in-the-loop TTA framework that capitalizes on the largely overlooked potential of clinician-corrected predictions.
Our framework conceives a divergence loss, designed specifically to diminish the prediction divergence instigated by domain disparities.
arXiv Detail & Related papers (2024-05-14T02:02:15Z) - AC-Norm: Effective Tuning for Medical Image Analysis via Affine
Collaborative Normalization [11.224435413938375]
Affine Collaborative Normalization (AC-Norm) is proposed for finetuning.
AC-Norm dynamically recalibrates the channels in the target model according to the cross-domain channel-wise correlations.
We demonstrate that AC-Norm unanimously outperforms the vanilla finetuning by up to 4% improvement.
arXiv Detail & Related papers (2023-07-28T03:27:25Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Ensembling Handcrafted Features with Deep Features: An Analytical Study
for Classification of Routine Colon Cancer Histopathological Nuclei Images [13.858624044986815]
We have used F1-measure, Precision, Recall, AUC, and Cross-Entropy Loss to analyse the performance of our approaches.
We observed from the results that the DL features ensemble bring a marked improvement in the overall performance of the model.
arXiv Detail & Related papers (2022-02-22T06:48:50Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.