MSA at ImageCLEF 2025 Multimodal Reasoning: Multilingual Multimodal Reasoning With Ensemble Vision Language Models
- URL: http://arxiv.org/abs/2507.11114v1
- Date: Tue, 15 Jul 2025 09:05:05 GMT
- Title: MSA at ImageCLEF 2025 Multimodal Reasoning: Multilingual Multimodal Reasoning With Ensemble Vision Language Models
- Authors: Seif Ahmed, Mohamed T. Younes, Abdelrahman Moustafa, Abdelrahman Allam, Hamza Moustafa,
- Abstract summary: We present a robust ensemble-based system for multilingual multimodal reasoning.<n>Our approach integrates Gemini 2.5 Flash for visual description, Gemini 1.5 Pro for caption refinement and consistency checks, and Gemini 2.5 Pro as a reasoner.<n>On the official leaderboard, our system (Team MSA) achieved first place overall in the multilingual track with 81.4% accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a robust ensemble-based system for multilingual multimodal reasoning, designed for the ImageCLEF 2025 EXAMS V challenge. Our approach integrates Gemini 2.5 Flash for visual description, Gemini 1.5 Pro for caption refinement and consistency checks, and Gemini 2.5 Pro as a reasoner which handles final answer selection, all coordinated through carefully engineered few-shot and zero-shot prompts. We conducted an extensive ablation study, training several large language models (Gemini 2.5 Flash, Phi 4, Gemma 3, Mistral) on an English dataset and its multilingual augmented version. Additionally, we evaluated Gemini 2.5 Flash in a zero-shot setting for comparison and found it to substantially outperform the trained models. Prompt design also proved critical: enforcing concise, language-normalized formats and prohibiting explanatory text boosted model accuracy on the English validation set from 55.9% to 61.7%. On the official leaderboard, our system (Team MSA) achieved first place overall in the multilingual track with 81.4% accuracy, and led 11 out of 13 individual language tracks, with top results such as 95.07% for Croatian and 92.12% for Italian. These findings highlight that lightweight OCR-VLM ensembles, when paired with precise prompt strategies and cross-lingual augmentation, can outperform heavier end-to-end models in high-stakes, multilingual educational settings.
Related papers
- Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters [53.59868121093848]
We introduce Seed-X, a family of open-source language models (LLMs) with 7B parameter size.<n>The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages.<n>The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs.
arXiv Detail & Related papers (2025-07-18T03:19:43Z) - Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study [13.409987421121405]
GemmaX2-28 is a 9B model achieving top-tier multilingual translation performance across 28 languages.<n>GemmaX2-28 consistently outperforms the state-of-the-art (SOTA) models such as TowerInstruct and XALMA.
arXiv Detail & Related papers (2025-02-04T16:57:03Z) - Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model [66.17354128553244]
Most Large Vision-Language Models (LVLMs) to date are trained predominantly on English data.<n>We investigate how different training mixes tip the scale for different groups of languages.<n>We train Centurio, a 100-language LVLM, offering state-of-the-art performance in an evaluation covering 14 tasks and 56 languages.
arXiv Detail & Related papers (2025-01-09T10:26:14Z) - M2-Encoder: Advancing Bilingual Image-Text Understanding by Large-scale
Efficient Pretraining [26.262677587795242]
We introduce a comprehensive bilingual (Chinese-English) dataset BM-6B with over 6 billion image-text pairs.
To handle such a scale of dataset, we propose a novel grouped aggregation approach for image-text contrastive loss computation.
We pretrain a series of bilingual image-text foundation models with an enhanced fine-grained understanding ability on BM-6B.
arXiv Detail & Related papers (2024-01-29T05:43:33Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
We train multilingual autoregressive language models on a balanced corpus covering a diverse set of languages.
Our largest model sets new state of the art in few-shot learning in more than 20 representative languages.
We present a detailed analysis of where the model succeeds and fails, showing in particular that it enables cross-lingual in-context learning.
arXiv Detail & Related papers (2021-12-20T16:52:35Z) - Multilingual Speech Translation with Efficient Finetuning of Pretrained
Models [82.22294901727933]
A minimalistic LNA (LayerNorm and Attention) finetuning can achieve zero-shot crosslingual and cross-modality transfer ability.
Our approach demonstrates strong zero-shot performance in a many-to-many multilingual model.
arXiv Detail & Related papers (2020-10-24T08:15:08Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.