Interpretable Bayesian Tensor Network Kernel Machines with Automatic Rank and Feature Selection
- URL: http://arxiv.org/abs/2507.11136v1
- Date: Tue, 15 Jul 2025 09:37:49 GMT
- Title: Interpretable Bayesian Tensor Network Kernel Machines with Automatic Rank and Feature Selection
- Authors: Afra Kilic, Kim Batselier,
- Abstract summary: Network Kernel Machines speed up model learning by representing parameters as low-rank TNs.<n>We propose a fully probabilistic framework that uses sparsity-inducing hierarchical priors on TN factors to infer model complexity.
- Score: 5.240890834159944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tensor Network (TN) Kernel Machines speed up model learning by representing parameters as low-rank TNs, reducing computation and memory use. However, most TN-based Kernel methods are deterministic and ignore parameter uncertainty. Further, they require manual tuning of model complexity hyperparameters like tensor rank and feature dimensions, often through trial-and-error or computationally costly methods like cross-validation. We propose Bayesian Tensor Network Kernel Machines, a fully probabilistic framework that uses sparsity-inducing hierarchical priors on TN factors to automatically infer model complexity. This enables automatic inference of tensor rank and feature dimensions, while also identifying the most relevant features for prediction, thereby enhancing model interpretability. All the model parameters and hyperparameters are treated as latent variables with corresponding priors. Given the Bayesian approach and latent variable dependencies, we apply a mean-field variational inference to approximate their posteriors. We show that applying a mean-field approximation to TN factors yields a Bayesian ALS algorithm with the same computational complexity as its deterministic counterpart, enabling uncertainty quantification at no extra computational cost. Experiments on synthetic and real-world datasets demonstrate the superior performance of our model in prediction accuracy, uncertainty quantification, interpretability, and scalability.
Related papers
- A Framework for Nonstationary Gaussian Processes with Neural Network Parameters [0.8057006406834466]
We propose a framework that uses nonstationary kernels whose parameters vary across the feature space, modeling these parameters as the output of a neural network.<n>Our method clearly describes the behavior of the nonstationary parameters and is compatible with approximation methods for scaling to large datasets.<n>We test a nonstationary variance and noise variant of our method on several machine learning datasets and find that it achieves better accuracy and log-score than both a stationary model and a hierarchical model approximated with variational inference.
arXiv Detail & Related papers (2025-07-16T14:09:49Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
We present a unifying perspective on recent results on ridge regression.<n>We use the basic tools of random matrix theory and free probability, aimed at readers with backgrounds in physics and deep learning.<n>Our results extend and provide a unifying perspective on earlier models of scaling laws.
arXiv Detail & Related papers (2024-05-01T15:59:00Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty.
A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient.
arXiv Detail & Related papers (2023-07-05T16:53:31Z) - Learning Summary Statistics for Bayesian Inference with Autoencoders [58.720142291102135]
We use the inner dimension of deep neural network based Autoencoders as summary statistics.
To create an incentive for the encoder to encode all the parameter-related information but not the noise, we give the decoder access to explicit or implicit information that has been used to generate the training data.
arXiv Detail & Related papers (2022-01-28T12:00:31Z) - Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression [17.158289775348063]
Kernelized tensor Regression (BKTR) can be considered a new and scalable approach to modeling processes with low-rank cotemporal structure.
We conduct extensive experiments on both synthetic and real-world data sets, and our results confirm the superior performance and efficiency of BKTR for model estimation and inference.
arXiv Detail & Related papers (2021-08-31T19:22:23Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
We analyze a corpus of models made publicly-available for a contest to predict the generalization accuracy of neural network (NN) models.
We identify what amounts to a Simpson's paradox: where "scale" metrics perform well overall but perform poorly on sub partitions of the data.
We present two novel shape metrics, one data-independent, and the other data-dependent, which can predict trends in the test accuracy of a series of NNs.
arXiv Detail & Related papers (2021-06-01T19:19:49Z) - Supervised Learning for Non-Sequential Data: A Canonical Polyadic
Decomposition Approach [85.12934750565971]
Efficient modelling of feature interactions underpins supervised learning for non-sequential tasks.
To alleviate this issue, it has been proposed to implicitly represent the model parameters as a tensor.
For enhanced expressiveness, we generalize the framework to allow feature mapping to arbitrarily high-dimensional feature vectors.
arXiv Detail & Related papers (2020-01-27T22:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.