論文の概要: A Robust Incomplete Multimodal Low-Rank Adaptation Approach for Emotion Recognition
- arxiv url: http://arxiv.org/abs/2507.11202v1
- Date: Tue, 15 Jul 2025 11:15:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:03.08954
- Title: A Robust Incomplete Multimodal Low-Rank Adaptation Approach for Emotion Recognition
- Title(参考訳): 感情認識のためのロバスト不完全マルチモーダル低ランク適応手法
- Authors: Xinkui Zhao, Jinsong Shu, Yangyang Wu, Guanjie Cheng, Zihe Liu, Naibo Wang, Shuiguang Deng, Zhongle Xie, Jianwei Yin,
- Abstract要約: マルチモーダル感情認識(MER)は、実用上不完全なマルチモーダルに遭遇することが多い。
そこで本研究では,MCULoRA(MCULoRA)と命名されたモダリティの組み合わせに基づく,一様疎結合な動的低ランク適応手法を提案する。
- 参考スコア(独自算出の注目度): 17.332141776831513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Emotion Recognition (MER) often encounters incomplete multimodality in practical applications due to sensor failures or privacy protection requirements. While existing methods attempt to address various incomplete multimodal scenarios by balancing the training of each modality combination through additional gradients, these approaches face a critical limitation: training gradients from different modality combinations conflict with each other, ultimately degrading the performance of the final prediction model. In this paper, we propose a unimodal decoupled dynamic low-rank adaptation method based on modality combinations, named MCULoRA, which is a novel framework for the parameter-efficient training of incomplete multimodal learning models. MCULoRA consists of two key modules, modality combination aware low-rank adaptation (MCLA) and dynamic parameter fine-tuning (DPFT). The MCLA module effectively decouples the shared information from the distinct characteristics of individual modality combinations. The DPFT module adjusts the training ratio of modality combinations based on the separability of each modality's representation space, optimizing the learning efficiency across different modality combinations. Our extensive experimental evaluation in multiple benchmark datasets demonstrates that MCULoRA substantially outperforms previous incomplete multimodal learning approaches in downstream task accuracy.
- Abstract(参考訳): マルチモーダル感情認識(MER)は、センサーの故障やプライバシー保護の要求により、実用上不完全なマルチモーダルに遭遇することが多い。
既存の手法では、追加の勾配による各モードの組み合わせの訓練のバランスをとることで、様々な不完全なマルチモーダルシナリオに対処しようとするが、これらの手法は、異なるモードの組み合わせからの勾配の訓練が互いに衝突し、最終的に最終的な予測モデルの性能を低下させるという限界に直面している。
本稿では,不完全なマルチモーダル学習モデルのパラメータ効率向上のための新しいフレームワークであるMCULoRAという,モダリティの組み合わせに基づく非モーダルデカップリング型動的低ランク適応手法を提案する。
MCULoRAは、低ランク適応(MCLA)と動的パラメータ微調整(DPFT)の2つの重要なモジュールから構成される。
MCLAモジュールは、個々のモダリティの組み合わせの異なる特性から共有情報を効果的に分離する。
DPFTモジュールは、各モダリティの表現空間の分離性に基づいて、モダリティの組み合わせのトレーニング比率を調整し、異なるモダリティの組み合わせ間で学習効率を最適化する。
複数のベンチマークデータセットにおいて、MCULoRAは、下流タスク精度において、従来の不完全なマルチモーダル学習アプローチを大幅に上回っていることを示す。
関連論文リスト
- DynCIM: Dynamic Curriculum for Imbalanced Multimodal Learning [15.524342129628957]
DynCIMは、サンプルとモダリティの両方の観点から固有の不均衡を定量化するために設計された、新しい動的カリキュラム学習フレームワークである。
DynCIMは、予測偏差、一貫性、安定性に応じて各サンプルの難易度を動的に評価するために、サンプルレベルのカリキュラムを使用している。
モダリティレベルのカリキュラムは、グローバルおよびローカルからのモダリティ貢献を測定する。
論文 参考訳(メタデータ) (2025-03-09T05:30:15Z) - Multimodal Fusion Balancing Through Game-Theoretic Regularization [22.959030061257533]
アンサンブルのような単純なベースラインを超越したマルチモーダルモデルの訓練には,現在のバランス手法が苦戦していることを示す。
マルチモーダルトレーニングにおけるすべてのモダリティが十分にトレーニングされていること、新しいモダリティからの学習が一貫してパフォーマンスを改善することを保証するにはどうすればよいのか?
本稿では,相互情報(MI)分解にインスパイアされた新たな損失成分であるMCRを提案する。
論文 参考訳(メタデータ) (2024-11-11T19:53:05Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
マルチモーダル学習は、異なるモーダルからの情報を統合することでモデル性能を向上させることが期待されている。
広く使われている共同トレーニング戦略は、不均衡で最適化されていないユニモーダル表現につながる。
そこで本研究では,OGM(On-the-fly Prediction Modulation)とOGM(On-the-fly Gradient Modulation)の戦略を提案する。
論文 参考訳(メタデータ) (2024-10-15T13:15:50Z) - Multimodal Classification via Modal-Aware Interactive Enhancement [6.621745547882088]
モーダル・アウェア・インタラクティブ・エンハンスメント(MIE)と呼ばれる新しいマルチモーダル学習手法を提案する。
具体的には、まず、シャープネス認識最小化(SAM)に基づく最適化戦略を用いて、前フェーズにおける学習目標の円滑化を図る。
そこで, SAMの幾何学的性質の助けを借りて, 逆相における異なるモード間の影響を加味するための勾配修正戦略を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:32:07Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
MLA(Multimodal Learning with Alternating Unimodal Adaptation)を提案する。
MLAは、それを交互に一助学習プロセスに変換することで、従来の共同マルチモーダル学習プロセスを再構築する。
共有ヘッドを通じてモーダル間相互作用をキャプチャし、異なるモーダル間で連続的な最適化を行う。
実験は5つの多様なデータセットで行われ、完全なモダリティを持つシナリオと、欠落したモダリティを持つシナリオを含む。
論文 参考訳(メタデータ) (2023-11-17T18:57:40Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
本稿では,大規模な事前学習型ユニモーダルモデルを用いて,識別型マルチモーダル学習を向上する方法について検討する。
MMLoRA(Multi-Modal Low-Rank Adaptation Learning)を導入する。
論文 参考訳(メタデータ) (2023-10-08T15:01:54Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Balanced Multimodal Learning via On-the-fly Gradient Modulation [10.5602074277814]
マルチモーダル学習は、異なる感覚を統合することで、世界を包括的に理解するのに役立つ。
学習目標に対する貢献の相違をモニタリングすることで,各モードの最適化を適応的に制御するオンザフライ勾配変調を提案する。
論文 参考訳(メタデータ) (2022-03-29T08:26:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。