A Robust Incomplete Multimodal Low-Rank Adaptation Approach for Emotion Recognition
- URL: http://arxiv.org/abs/2507.11202v1
- Date: Tue, 15 Jul 2025 11:15:35 GMT
- Title: A Robust Incomplete Multimodal Low-Rank Adaptation Approach for Emotion Recognition
- Authors: Xinkui Zhao, Jinsong Shu, Yangyang Wu, Guanjie Cheng, Zihe Liu, Naibo Wang, Shuiguang Deng, Zhongle Xie, Jianwei Yin,
- Abstract summary: Multimodal Emotion Recognition (MER) often encounters incomplete multimodality in practical applications.<n>We propose a unimodal decoupled dynamic low-rank adaptation method based on modality combinations, named MCULoRA.
- Score: 17.332141776831513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Emotion Recognition (MER) often encounters incomplete multimodality in practical applications due to sensor failures or privacy protection requirements. While existing methods attempt to address various incomplete multimodal scenarios by balancing the training of each modality combination through additional gradients, these approaches face a critical limitation: training gradients from different modality combinations conflict with each other, ultimately degrading the performance of the final prediction model. In this paper, we propose a unimodal decoupled dynamic low-rank adaptation method based on modality combinations, named MCULoRA, which is a novel framework for the parameter-efficient training of incomplete multimodal learning models. MCULoRA consists of two key modules, modality combination aware low-rank adaptation (MCLA) and dynamic parameter fine-tuning (DPFT). The MCLA module effectively decouples the shared information from the distinct characteristics of individual modality combinations. The DPFT module adjusts the training ratio of modality combinations based on the separability of each modality's representation space, optimizing the learning efficiency across different modality combinations. Our extensive experimental evaluation in multiple benchmark datasets demonstrates that MCULoRA substantially outperforms previous incomplete multimodal learning approaches in downstream task accuracy.
Related papers
- DynCIM: Dynamic Curriculum for Imbalanced Multimodal Learning [15.524342129628957]
DynCIM is a novel dynamic curriculum learning framework designed to quantify the inherent imbalances from both sample and modality perspectives.<n>DynCIM employs a sample-level curriculum to dynamically assess each sample's difficulty according to prediction deviation, consistency, and stability.<n>A modality-level curriculum measures modality contributions from global and local.
arXiv Detail & Related papers (2025-03-09T05:30:15Z) - Multimodal Fusion Balancing Through Game-Theoretic Regularization [22.959030061257533]
We show that current balancing methods struggle to train multimodal models that surpass even simple baselines, such as ensembles.<n>This raises the question: how can we ensure that all modalities in multimodal training are sufficiently trained, and that learning from new modalities consistently improves performance?<n>This paper proposes the Multimodal Competition Regularizer (MCR), a new loss component inspired by mutual information (MI) decomposition.
arXiv Detail & Related papers (2024-11-11T19:53:05Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Multimodal Classification via Modal-Aware Interactive Enhancement [6.621745547882088]
We propose a novel multimodal learning method, called modal-aware interactive enhancement (MIE)
Specifically, we first utilize an optimization strategy based on sharpness aware minimization (SAM) to smooth the learning objective during the forward phase.
Then, with the help of the geometry property of SAM, we propose a gradient modification strategy to impose the influence between different modalities during the backward phase.
arXiv Detail & Related papers (2024-07-05T15:32:07Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
arXiv Detail & Related papers (2023-11-17T18:57:40Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
We propose to use invariant features for a missing modality imagination network (IF-MMIN)
We show that the proposed model outperforms all baselines and invariantly improves the overall emotion recognition performance under uncertain missing-modality conditions.
arXiv Detail & Related papers (2022-10-27T12:16:25Z) - Balanced Multimodal Learning via On-the-fly Gradient Modulation [10.5602074277814]
Multimodal learning helps to comprehensively understand the world, by integrating different senses.
We propose on-the-fly gradient modulation to adaptively control the optimization of each modality, via monitoring the discrepancy of their contribution towards the learning objective.
arXiv Detail & Related papers (2022-03-29T08:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.