Fine-Grained Chinese Hate Speech Understanding: Span-Level Resources, Coded Term Lexicon, and Enhanced Detection Frameworks
- URL: http://arxiv.org/abs/2507.11292v1
- Date: Tue, 15 Jul 2025 13:19:18 GMT
- Title: Fine-Grained Chinese Hate Speech Understanding: Span-Level Resources, Coded Term Lexicon, and Enhanced Detection Frameworks
- Authors: Zewen Bai, Liang Yang, Shengdi Yin, Yuanyuan Sun, Hongfei Lin,
- Abstract summary: We introduce the Span-level Target-Aware Toxicity Extraction dataset (STATE ToxiCN), the first span-level Chinese hate speech dataset.<n>We conduct the first comprehensive study on Chinese coded hate terms, LLMs' ability to interpret hate semantics.<n>We propose a method to integrate an annotated lexicon into models, significantly enhancing hate speech detection performance.
- Score: 13.187315629074428
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The proliferation of hate speech has inflicted significant societal harm, with its intensity and directionality closely tied to specific targets and arguments. In recent years, numerous machine learning-based methods have been developed to detect hateful comments on online platforms automatically. However, research on Chinese hate speech detection lags behind, and interpretability studies face two major challenges: first, the scarcity of span-level fine-grained annotated datasets limits models' deep semantic understanding of hate speech; second, insufficient research on identifying and interpreting coded hate speech restricts model explainability in complex real-world scenarios. To address these, we make the following contributions: (1) We introduce the Span-level Target-Aware Toxicity Extraction dataset (STATE ToxiCN), the first span-level Chinese hate speech dataset, and evaluate the hate semantic understanding of existing models using it. (2) We conduct the first comprehensive study on Chinese coded hate terms, LLMs' ability to interpret hate semantics. (3) We propose a method to integrate an annotated lexicon into models, significantly enhancing hate speech detection performance. Our work provides valuable resources and insights to advance the interpretability of Chinese hate speech detection research.
Related papers
- Can Prompting LLMs Unlock Hate Speech Detection across Languages? A Zero-shot and Few-shot Study [59.30098850050971]
This work evaluates LLM prompting-based detection across eight non-English languages.<n>We show that while zero-shot and few-shot prompting lag behind fine-tuned encoder models on most of the real-world evaluation sets, they achieve better generalization on functional tests for hate speech detection.
arXiv Detail & Related papers (2025-05-09T16:00:01Z) - Evaluation of Hate Speech Detection Using Large Language Models and Geographical Contextualization [0.0]
This study systematically investigates the performance of LLMs on detecting hate speech across multilingual and diverse geographic contexts.<n>We evaluate three state-of-the-art LLMs: Llama2 (13b), Codellama (7b), and DeepSeekCoder (6.7b)<n>Codellama had the best binary classification recall with 70.6% and an F1-score of 52.18%, whereas DeepSeekCoder had the best performance in geographic sensitivity, correctly detecting 63 out of 265 locations.
arXiv Detail & Related papers (2025-02-26T22:59:36Z) - STATE ToxiCN: A Benchmark for Span-level Target-Aware Toxicity Extraction in Chinese Hate Speech Detection [14.863778285778897]
We provide a solution for fine-grained detection of Chinese hate speech.<n>First, we construct a dataset containing Target-Argument-Hateful-Group quadruples (STATE ToxiCN)<n> Secondly, we evaluate the span-level hate speech detection performance of existing models.<n>Finally, we conduct the first study on Chinese hateful slang and evaluate the ability of LLMs to detect such expressions.
arXiv Detail & Related papers (2025-01-26T08:45:37Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
A major limitation of existing methods is that hate speech detection is a highly contextual problem.
Recently, large language models (LLMs) have demonstrated state-of-the-art performance in several natural language tasks.
Our study reveals that a meticulously crafted reasoning prompt can effectively capture the context of hate speech.
arXiv Detail & Related papers (2024-01-07T00:39:33Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
We propose a novel dual contrastive learning framework for hate speech detection.
Our framework jointly optimize the self-supervised and the supervised contrastive learning loss for capturing span-level information.
We conduct experiments on two publicly available English datasets, and experimental results show that the proposed model outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-07-10T13:23:36Z) - Model-Agnostic Meta-Learning for Multilingual Hate Speech Detection [23.97444551607624]
Hate speech in social media is a growing phenomenon, and detecting such toxic content has gained significant traction.
HateMAML is a model-agnostic meta-learning-based framework that effectively performs hate speech detection in low-resource languages.
Extensive experiments are conducted on five datasets across eight different low-resource languages.
arXiv Detail & Related papers (2023-03-04T22:28:29Z) - Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference [4.885207279350052]
We propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework.
We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts.
arXiv Detail & Related papers (2022-04-14T15:03:35Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.