Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference
- URL: http://arxiv.org/abs/2204.07010v1
- Date: Thu, 14 Apr 2022 15:03:35 GMT
- Title: Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference
- Authors: Jiaxuan Li and Yue Ning
- Abstract summary: We propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework.
We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts.
- Score: 4.885207279350052
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the spreading of hate speech on social media in recent years, automatic
detection of hate speech is becoming a crucial task and has attracted attention
from various communities. This task aims to recognize online posts (e.g.,
tweets) that contain hateful information. The peculiarities of languages in
social media, such as short and poorly written content, lead to the difficulty
of learning semantics and capturing discriminative features of hate speech.
Previous studies have utilized additional useful resources, such as sentiment
hashtags, to improve the performance of hate speech detection. Hashtags are
added as input features serving either as sentiment-lexicons or extra context
information. However, our close investigation shows that directly leveraging
these features without considering their context may introduce noise to
classifiers. In this paper, we propose a novel approach to leverage sentiment
hashtags to enhance hate speech detection in a natural language inference
framework. We design a novel framework SRIC that simultaneously performs two
tasks: (1) semantic relation inference between online posts and sentiment
hashtags, and (2) sentiment classification on these posts. The semantic
relation inference aims to encourage the model to encode sentiment-indicative
information into representations of online posts. We conduct extensive
experiments on two real-world datasets and demonstrate the effectiveness of our
proposed framework compared with state-of-the-art representation learning
models.
Related papers
- Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
We propose a novel dual contrastive learning framework for hate speech detection.
Our framework jointly optimize the self-supervised and the supervised contrastive learning loss for capturing span-level information.
We conduct experiments on two publicly available English datasets, and experimental results show that the proposed model outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-07-10T13:23:36Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSyn is a context-synergized neural network that explicitly incorporates user- and conversational context for detecting implicit hate speech in online conversations.
We show that CoSyn outperforms all our baselines in detecting implicit hate speech with absolute improvements in the range of 1.24% - 57.8%.
arXiv Detail & Related papers (2023-03-02T17:30:43Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
We provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter.
This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic.
arXiv Detail & Related papers (2022-10-02T09:04:47Z) - Improved two-stage hate speech classification for twitter based on Deep
Neural Networks [0.0]
Hate speech is a form of online harassment that involves the use of abusive language.
The model we propose in this work is an extension of an existing approach based on LSTM neural network architectures.
Our study includes a performance comparison of several proposed alternative methods for the second stage evaluated on a public corpus of 16k tweets.
arXiv Detail & Related papers (2022-06-08T20:57:41Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
We propose contrastive self-supervised learning on heterogeneous information sources, so as to reveal their relations and characterize rumors better.
We term this framework as Self-supervised Rumor Detection (SRD)
Extensive experiments on three real-world datasets validate the effectiveness of SRD for automatic rumor detection on social media.
arXiv Detail & Related papers (2022-04-19T12:10:03Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - Latent Hatred: A Benchmark for Understanding Implicit Hate Speech [22.420275418616242]
This work introduces a theoretically-justified taxonomy of implicit hate speech and a benchmark corpus with fine-grained labels for each message.
We present systematic analyses of our dataset using contemporary baselines to detect and explain implicit hate speech.
arXiv Detail & Related papers (2021-09-11T16:52:56Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Short texts published on Twitter have earned significant attention as a rich source of information.
Their inherent characteristics, such as the informal, and noisy linguistic style, remain challenging to many natural language processing (NLP) tasks.
This study fulfils an assessment of existing language models in distinguishing the sentiment expressed in tweets by using a rich collection of 22 datasets.
arXiv Detail & Related papers (2021-05-29T21:05:28Z) - AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection [5.649040805759824]
This paper proposes a novel multitask learning-based model, AngryBERT, which jointly learns hate speech detection with sentiment classification and target identification as secondary relevant tasks.
Experiment results show that AngryBERT outperforms state-of-the-art single-task-learning and multitask learning baselines.
arXiv Detail & Related papers (2021-03-14T16:17:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.