Reasoning Strategies in Large Language Models: Can They Follow, Prefer, and Optimize?
- URL: http://arxiv.org/abs/2507.11423v2
- Date: Wed, 16 Jul 2025 13:02:26 GMT
- Title: Reasoning Strategies in Large Language Models: Can They Follow, Prefer, and Optimize?
- Authors: Yanjian Zhang, Guillaume Wisniewski, Nadi Tomeh, Thierry Charnois,
- Abstract summary: Large language models (LLMs) tend to favor a single reasoning strategy, potentially limiting their effectiveness in diverse reasoning challenges.<n>We investigate whether prompting can control LLMs reasoning strategies and assess its impact on logical problem-solving.
- Score: 5.589792999813676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human reasoning involves different strategies, each suited to specific problems. Prior work shows that large language model (LLMs) tend to favor a single reasoning strategy, potentially limiting their effectiveness in diverse reasoning challenges. In this work, we investigate whether prompting can control LLMs reasoning strategies and assess its impact on logical problem-solving. While our experiments show that no single strategy consistently improves accuracy, performance could be enhanced if models could adaptively choose the optimal strategy. We propose methods to guide LLMs in strategy selection, highlighting new ways to refine their reasoning abilities.
Related papers
- On the Adaptive Psychological Persuasion of Large Language Models [37.18479986426215]
We show that Large Language Models (LLMs) can autonomously persuade and resist persuasion.<n>We introduce eleven comprehensive psychological persuasion strategies.<n>We propose an adaptive framework that trains LLMs to autonomously select optimal strategies.
arXiv Detail & Related papers (2025-06-07T13:52:50Z) - EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
We propose explicit policy optimization (EPO) for strategic reasoning.<n>We train the strategic reasoning model via multi-turn reinforcement learning (RL),utilizing process rewards and iterative self-play.<n>Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies.
arXiv Detail & Related papers (2025-02-18T03:15:55Z) - SIKeD: Self-guided Iterative Knowledge Distillation for mathematical reasoning [49.29200323760457]
Large Language Models (LLMs) can transfer their reasoning skills to smaller models.
Smaller models are not expressive enough to fit the LLMs distribution on all strategies when distilled.
This reliance on one strategy poses a challenge for smaller models when attempting to solve reasoning tasks that may be difficult with their preferred strategy.
arXiv Detail & Related papers (2024-10-24T09:29:18Z) - SMART: Self-learning Meta-strategy Agent for Reasoning Tasks [44.45037694899524]
We introduce SMART (Self-learning Meta-strategy Agent for Reasoning Tasks), a novel framework that enables LMs to learn and select the most effective strategies for various reasoning tasks.
We model the strategy selection process as a Markov Decision Process and leverage reinforcement learning-driven continuous self-improvement.
Our experiments demonstrate that SMART significantly enhances the ability of models to choose optimal strategies without external guidance.
arXiv Detail & Related papers (2024-10-21T15:55:04Z) - DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search [37.16633337724158]
DOTS is an approach enabling LLMs to reason dynamically via optimal reasoning trajectory search.
Our method consistently outperforms static reasoning techniques and the vanilla instruction tuning approach.
arXiv Detail & Related papers (2024-10-04T18:58:09Z) - Optimising Calls to Large Language Models with Uncertainty-Based Two-Tier Selection [80.63946798650653]
Decision centers on whether to use a large LLM with better performance or a smaller one with reduced costs.
We propose a simpler solution; we use only the uncertainty of the generations of the small LLM as the decision criterion.
Our experiments reveal this simple solution optimally balances cost and performance, outperforming existing methods on 25 out of 27 experimental setups.
arXiv Detail & Related papers (2024-05-03T14:38:59Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
It requires Large Language Model (LLM) agents to adapt their strategies dynamically in multi-agent environments.
We propose a novel framework: "K-Level Reasoning with Large Language Models (K-R)"
arXiv Detail & Related papers (2024-02-02T16:07:05Z) - StrategyLLM: Large Language Models as Strategy Generators, Executors, Optimizers, and Evaluators for Problem Solving [76.5322280307861]
StrategyLLM allows LLMs to perform inductive reasoning, deriving general strategies from specific task instances, and deductive reasoning, applying these general strategies to particular task examples, for constructing generalizable and consistent few-shot prompts.
Experimental results demonstrate that StrategyLLM outperforms the competitive baseline CoT-SC that requires human-annotated solutions on 13 datasets across 4 challenging tasks without human involvement, including math reasoning (34.2% $rightarrow$ 38.8%), commonsense reasoning (70.3% $rightarrow$ 72.5%), algorithmic reasoning (73.7% $rightarrow$ 85.0
arXiv Detail & Related papers (2023-11-15T09:18:09Z) - Strategic Reasoning with Language Models [35.63300060111918]
Strategic reasoning enables agents to cooperate, communicate, and compete with other agents in diverse situations.
Existing approaches to solving strategic games rely on extensive training, yielding strategies that do not generalize to new scenarios or games without retraining.
This paper introduces an approach that uses pretrained Large Language Models with few-shot chain-of-thought examples to enable strategic reasoning for AI agents.
arXiv Detail & Related papers (2023-05-30T16:09:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.