論文の概要: The Safety Gap Toolkit: Evaluating Hidden Dangers of Open-Source Models
- arxiv url: http://arxiv.org/abs/2507.11544v1
- Date: Tue, 08 Jul 2025 23:58:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.045202
- Title: The Safety Gap Toolkit: Evaluating Hidden Dangers of Open-Source Models
- Title(参考訳): Safety Gap Toolkit: オープンソースモデルの隠れた危険を評価する
- Authors: Ann-Kathrin Dombrowski, Dillon Bowen, Adam Gleave, Chris Cundy,
- Abstract要約: 我々は,最先端のオープンウェイトモデルの安全性ギャップを推定するツールキットをオープンソースとして公開した。
生物化学的, サイバー的能力, 拒絶率, モデル生成品質を2つの家系で評価した。
実験の結果,モデルスケールの増大とともに安全ギャップが拡大し,安全ガードを取り外すと有効危険能力が著しく増大することがわかった。
- 参考スコア(独自算出の注目度): 5.984437476321095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Open-weight large language models (LLMs) unlock huge benefits in innovation, personalization, privacy, and democratization. However, their core advantage - modifiability - opens the door to systemic risks: bad actors can trivially subvert current safeguards, turning beneficial models into tools for harm. This leads to a 'safety gap': the difference in dangerous capabilities between a model with intact safeguards and one that has been stripped of those safeguards. We open-source a toolkit to estimate the safety gap for state-of-the-art open-weight models. As a case study, we evaluate biochemical and cyber capabilities, refusal rates, and generation quality of models from two families (Llama-3 and Qwen-2.5) across a range of parameter scales (0.5B to 405B) using different safeguard removal techniques. Our experiments reveal that the safety gap widens as model scale increases and effective dangerous capabilities grow substantially when safeguards are removed. We hope that the Safety Gap Toolkit (https://github.com/AlignmentResearch/safety-gap) will serve as an evaluation framework for common open-source models and as a motivation for developing and testing tamper-resistant safeguards. We welcome contributions to the toolkit from the community.
- Abstract(参考訳): オープンウェイトな大規模言語モデル(LLM)は、イノベーション、パーソナライゼーション、プライバシ、民主化における大きなメリットを解放します。
しかし、彼らの中核的なアドバンテージであるモダフィタビリティは、システム的リスクへの扉を開く。
これは"安全ギャップ"につながります – 無傷のセーフガードを持つモデルと,それらのセーフガードから取り除かれたモデルとの間には,危険な能力の差があります。
我々は,最先端のオープンウェイトモデルの安全性ギャップを推定するツールキットをオープンソースとして公開した。
ケーススタディでは,異なる保護除去技術を用いて,Llama-3とQwen-2.5の2種類のモデル(0.5Bから405B)の生化学的,サイバー的能力,拒絶率,生成品質を評価した。
実験の結果,モデルスケールの増大とともに安全ギャップが拡大し,安全ガードを取り外すと有効危険能力が著しく増大することがわかった。
Safety Gap Toolkit(https://github.com/AlignmentResearch/safety-gap)が、一般的なオープンソースモデルの評価フレームワークとして機能し、タンパー耐性のセーフガードの開発とテストのモチベーションとして役立ちたいと思っています。
ツールキットへのコミュニティからのコントリビューションを歓迎します。
関連論文リスト
- SafeKey: Amplifying Aha-Moment Insights for Safety Reasoning [76.56522719330911]
大規模推論モデル(LRM)は、応答する前に明示的に推論する新しい世代パラダイムを導入する。
LRMは有害なクエリや敵の攻撃に対して大きな安全リスクをもたらす。
キー文中の安全アハモーメントをより活性化するSafeKeyを提案する。
論文 参考訳(メタデータ) (2025-05-22T03:46:03Z) - How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation [39.44000290664494]
ジェイルブレイク攻撃は、生成モデルのビルトインセーフをバイパスする有害なプロンプトであり、モデルの脆弱性に対する深刻な懸念を引き起こす。
本稿では,標準生成タスクをバイナリ分類問題として再検討することにより,ジェイルブレイク防御を体系的に検討する。
我々は,全てのクエリに対する拒絶率を増加させる安全性シフトと,有害な入力と良質な入力を区別するモデルの能力を向上させる有害性判別という2つの主要な防御メカニズムを同定する。
論文 参考訳(メタデータ) (2025-02-20T12:07:40Z) - SafeSwitch: Steering Unsafe LLM Behavior via Internal Activation Signals [50.463399903987245]
大規模言語モデル(LLM)は、様々なタスクにまたがる例外的な能力を示すが、有害なコンテンツを生成することでリスクを引き起こす。
LLMは、内部状態の安全性に関する内部評価を同様に行うことができることを示す。
本稿では,プロバーをベースとした内部状態モニタを用いて,安全でない出力を規制するSafeSwitchを提案する。
論文 参考訳(メタデータ) (2025-02-03T04:23:33Z) - Internal Activation Revision: Safeguarding Vision Language Models Without Parameter Update [8.739132798784777]
視覚言語モデル(VLM)は、強いマルチモーダル能力を示すが、有害なコンテンツを生成する可能性が高い。
本稿では,世代ごとのアクティベーションを効率的に修正するテクスブファイナル・アクティベーション・リビジョン・アプローチを提案する。
我々のフレームワークはレイヤーレベルとヘッドレベルの両方のリビジョンを組み込んでおり、モデルの生成を様々なレベルの粒度で制御する。
論文 参考訳(メタデータ) (2025-01-24T06:17:22Z) - Overriding Safety protections of Open-source Models [4.093963624562595]
本稿では, 微調整における有害データ導入の影響について検討する。
有害なデータに対してモデルを微調整することで、役に立たないか、信頼できないかを調査する。
安全な微調整モデルでは、ベースモデルと比較してASRは51.68%減少する。
論文 参考訳(メタデータ) (2024-09-28T22:53:27Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance [48.36220909956064]
SafeAlignerは、ジェイルブレイク攻撃に対する防御を強化するためのデコード段階で実装された方法論である。
安全性を高めるために訓練されたセンチネルモデルと、よりリスクの高い応答を生成するように設計されたイントルーダモデルである。
SafeAlignerは有害なトークンの発生を低減しつつ、有益トークンの可能性を高めることができることを示す。
論文 参考訳(メタデータ) (2024-06-26T07:15:44Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
本研究では,セキュリティ強化拡散モデルの脆弱性について検討する。
これらのモデルは、シンプルで効果的なバックドア攻撃であるDIFF2に非常に感受性があることを実証する。
ケーススタディでは、DIFF2は、ベンチマークデータセットとモデル間で、パーフィケーション後の精度と認定精度の両方を著しく削減できることを示している。
論文 参考訳(メタデータ) (2024-06-14T02:39:43Z) - Ring-A-Bell! How Reliable are Concept Removal Methods for Diffusion Models? [52.238883592674696]
Ring-A-Bellは、T2I拡散モデルのためのモデルに依存しないレッドチームツールである。
これは、不適切なコンテンツの生成に対応する拡散モデルに対する問題的プロンプトを特定する。
この結果から,安全プロンプトベンチマークの操作により,既存の安全メカニズムを回避できると考えられるプロンプトを変換できることが示唆された。
論文 参考訳(メタデータ) (2023-10-16T02:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。