Recurrent U-Net-Based Graph Neural Network (RUGNN) for Accurate Deformation Predictions in Sheet Material Forming
- URL: http://arxiv.org/abs/2507.11547v1
- Date: Thu, 10 Jul 2025 08:14:18 GMT
- Title: Recurrent U-Net-Based Graph Neural Network (RUGNN) for Accurate Deformation Predictions in Sheet Material Forming
- Authors: Yingxue Zhao, Qianyi Chen, Haoran Li, Haosu Zhou, Hamid Reza Attar, Tobias Pfaff, Tailin Wu, Nan Li,
- Abstract summary: This study developed a new graph neural network surrogate model named Recurrent U Net-based Graph Neural Network (RUGNN)<n>The RUGNN model can achieve accurate predictions of sheet material deformation fields across multiple forming timesteps.
- Score: 13.180335574191432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, various artificial intelligence-based surrogate models have been proposed to provide rapid manufacturability predictions of material forming processes. However, traditional AI-based surrogate models, typically built with scalar or image-based neural networks, are limited in their ability to capture complex 3D spatial relationships and to operate in a permutation-invariant manner. To overcome these issues, emerging graph-based surrogate models are developed using graph neural networks. This study developed a new graph neural network surrogate model named Recurrent U Net-based Graph Neural Network (RUGNN). The RUGNN model can achieve accurate predictions of sheet material deformation fields across multiple forming timesteps. The RUGNN model incorporates Gated Recurrent Units (GRUs) to model temporal dynamics and a U-Net inspired graph-based downsample/upsample mechanism to handle spatial long-range dependencies. A novel 'node-to-surface' contact representation method was proposed, offering significant improvements in computational efficiency for large-scale contact interactions. The RUGNN model was validated using a cold forming case study and a more complex hot forming case study using aluminium alloys. Results demonstrate that the RUGNN model provides accurate deformation predictions closely matching ground truth FE simulations and outperforming several baseline GNN architectures. Model tuning was also performed to identify suitable hyperparameters, training strategies, and input feature representations. These results demonstrate that RUGNN is a reliable approach to support sheet material forming design by enabling accurate manufacturability predictions.
Related papers
- Variational Graph Convolutional Neural Networks [72.67088029389764]
Uncertainty can help improve the explainability of Graph Convolutional Networks.<n>Uncertainty can also be used in critical applications to verify the results of the model.
arXiv Detail & Related papers (2025-07-02T13:28:37Z) - Generalized Factor Neural Network Model for High-dimensional Regression [50.554377879576066]
We tackle the challenges of modeling high-dimensional data sets with latent low-dimensional structures hidden within complex, non-linear, and noisy relationships.<n>Our approach enables a seamless integration of concepts from non-parametric regression, factor models, and neural networks for high-dimensional regression.
arXiv Detail & Related papers (2025-02-16T23:13:55Z) - DenseGNN: universal and scalable deeper graph neural networks for high-performance property prediction in crystals and molecules [4.648990939177395]
We introduce DenseGNN, which employs Dense Connectivity Network (DCN), Hierarchical Node-Edge-Graph Residual Networks (HRN), and Local Structure Order Parameters Embedding (LOPE)<n>DenseGNN achieves state-of-the-art performance on datasets such as JARVIS-DFT, Materials Project, and QM9, improving the performance of models like GIN, Schnet, and Hamnet on materials datasets.
arXiv Detail & Related papers (2025-01-05T13:41:28Z) - KA-GNN: Kolmogorov-Arnold Graph Neural Networks for Molecular Property Prediction [16.53371673077183]
We propose the first non-trivial Kolmogorov-Arnold Network-based Graph Neural Networks (KA-GNNs)<n>The essential idea is to utilize KAN's unique power to optimize GNN architectures at three major levels, including node embedding, message passing, and readout.<n>It has been found that our KA-GNNs can outperform traditional GNN models.
arXiv Detail & Related papers (2024-10-15T06:44:57Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
This article presents Recurrent Neural Network (RNN) models as a surrogate for computationally intensive meso-scale simulation of woven composites.
A mean-field model generates a comprehensive data set representing elasto-plastic behavior.
In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task.
arXiv Detail & Related papers (2023-11-22T14:47:54Z) - Interpretable A-posteriori Error Indication for Graph Neural Network Surrogate Models [0.0]
This work introduces an interpretability enhancement procedure for graph neural networks (GNNs)
The end result is an interpretable GNN model that isolates regions in physical space, corresponding to sub-graphs, that are intrinsically linked to the forecasting task.
The interpretable GNNs can also be used to identify, during inference, graph nodes that correspond to a majority of the anticipated forecasting error.
arXiv Detail & Related papers (2023-11-13T18:37:07Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - Image-Like Graph Representations for Improved Molecular Property
Prediction [7.119677737397071]
We propose a new intrinsic molecular representation that bypasses the need for GNNs entirely, dubbed CubeMol.
Our fixed-dimensional representation, when paired with a transformer model, exceeds the performance of state-of-the-art GNN models and provides a path for scalability.
arXiv Detail & Related papers (2021-11-20T22:39:11Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.