SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery
- URL: http://arxiv.org/abs/2507.11570v1
- Date: Tue, 15 Jul 2025 01:18:28 GMT
- Title: SurgeryLSTM: A Time-Aware Neural Model for Accurate and Explainable Length of Stay Prediction After Spine Surgery
- Authors: Ha Na Cho, Sairam Sutari, Alexander Lopez, Hansen Bow, Kai Zheng,
- Abstract summary: We develop and evaluate machine learning (ML) models for predicting length of stay (LOS) in elective spine surgery.<n>We compare traditional ML models with our developed model, SurgeryLSTM, a masked bidirectional long short-term memory (BiLSTM) with an attention.<n>Performance was evaluated using the coefficient of determination (R2) and key predictors were identified using explainable AI.
- Score: 44.119171920037196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective: To develop and evaluate machine learning (ML) models for predicting length of stay (LOS) in elective spine surgery, with a focus on the benefits of temporal modeling and model interpretability. Materials and Methods: We compared traditional ML models (e.g., linear regression, random forest, support vector machine (SVM), and XGBoost) with our developed model, SurgeryLSTM, a masked bidirectional long short-term memory (BiLSTM) with an attention, using structured perioperative electronic health records (EHR) data. Performance was evaluated using the coefficient of determination (R2), and key predictors were identified using explainable AI. Results: SurgeryLSTM achieved the highest predictive accuracy (R2=0.86), outperforming XGBoost (R2 = 0.85) and baseline models. The attention mechanism improved interpretability by dynamically identifying influential temporal segments within preoperative clinical sequences, allowing clinicians to trace which events or features most contributed to each LOS prediction. Key predictors of LOS included bone disorder, chronic kidney disease, and lumbar fusion identified as the most impactful predictors of LOS. Discussion: Temporal modeling with attention mechanisms significantly improves LOS prediction by capturing the sequential nature of patient data. Unlike static models, SurgeryLSTM provides both higher accuracy and greater interpretability, which are critical for clinical adoption. These results highlight the potential of integrating attention-based temporal models into hospital planning workflows. Conclusion: SurgeryLSTM presents an effective and interpretable AI solution for LOS prediction in elective spine surgery. Our findings support the integration of temporal, explainable ML approaches into clinical decision support systems to enhance discharge readiness and individualized patient care.
Related papers
- AUTOCT: Automating Interpretable Clinical Trial Prediction with LLM Agents [47.640779069547534]
AutoCT is a novel framework that combines the reasoning capabilities of large language models with the explainability of classical machine learning.<n>We show that AutoCT performs on par with or better than SOTA methods on clinical trial prediction tasks within only a limited number of self-refinement iterations.
arXiv Detail & Related papers (2025-06-04T11:50:55Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism [7.510165488300369]
Temporal-Feature Cross Attention Mechanism (TFCAM) is a novel deep learning framework designed to capture dynamic interactions among clinical features across time.<n>In an experiment with 1,422 patients with Chronic Kidney Disease, TFCAM outperformed LSTM and RETAIN baselines, achieving an AUROC of 0.95 and an F1-score of 0.69.
arXiv Detail & Related papers (2025-03-25T02:35:08Z) - Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.<n>We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.<n> SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality.<n> predictive models for lung metastasis inHCC remain limited in scope and clinical applicability.<n>We develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database.
arXiv Detail & Related papers (2025-01-20T20:06:31Z) - Development and Comparative Analysis of Machine Learning Models for Hypoxemia Severity Triage in CBRNE Emergency Scenarios Using Physiological and Demographic Data from Medical-Grade Devices [0.0]
Gradient Boosting Models (GBMs) outperformed sequential models in terms of training speed, interpretability, and reliability.
A 5-minute prediction window was chosen for timely intervention, with minute-levels standardizing the data.
This study highlights ML's potential to improve triage and reduce alarm fatigue.
arXiv Detail & Related papers (2024-10-30T23:24:28Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Modeling Long Sequences in Bladder Cancer Recurrence: A Comparative Evaluation of LSTM,Transformer,and Mamba [0.0]
This study integrates the advantages of deep learning models for handling long-sequence data with the Cox proportional hazards model.
The LSTM-Cox model is a robust and efficient method for recurrent data analysis and feature extraction,surpassing newer models like Transformer and Mamba.
arXiv Detail & Related papers (2024-05-28T18:38:15Z) - Prediction of Post-Operative Renal and Pulmonary Complications Using
Transformers [69.81176740997175]
We evaluate the performance of transformer-based models in predicting postoperative acute renal failure, pulmonary complications, and postoperative in-hospital mortality.
Our results demonstrate that transformer-based models can achieve superior performance in predicting postoperative complications and outperform traditional machine learning models.
arXiv Detail & Related papers (2023-06-01T14:08:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.