Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
- URL: http://arxiv.org/abs/2507.11662v1
- Date: Tue, 15 Jul 2025 18:50:29 GMT
- Title: Let's Think in Two Steps: Mitigating Agreement Bias in MLLMs with Self-Grounded Verification
- Authors: Moises Andrade, Joonhyuk Cha, Brandon Ho, Vriksha Srihari, Karmesh Yadav, Zsolt Kira,
- Abstract summary: Verifiers -- functions assigning rewards to agent behavior -- have been key for AI progress in domains like math and board games.<n>We evaluate Multimodal Large Language Models (MLLMs) as verifiers of agent trajectories across web navigation, computer use, and robotic manipulation.<n>We propose Self-Grounded Verification (SGV), a lightweight method that enables more effective use of MLLMs' knowledge and reasoning.
- Score: 17.67273082468732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Verifiers -- functions assigning rewards to agent behavior -- have been key for AI progress in domains like math and board games. However, extending these gains to domains without clear-cut success criteria (e.g.,computer use) remains a challenge: while humans can recognize suitable outcomes, translating this intuition into scalable rules is non-trivial. Multimodal Large Language Models(MLLMs) emerge as a promising solution, given their world knowledge, human-preference alignment, and reasoning skills. We evaluate MLLMs as verifiers of agent trajectories across web navigation, computer use, and robotic manipulation, and identify a critical limitation: agreement bias, a strong tendency for MLLMs to favor information in their context window, often generating chains of thought to rationalize flawed behavior. This bias is pervasive across models, resilient to test-time scaling, and can impact several methods using MLLMs as evaluators (e.g.,data filtering). Notably, it occurs despite MLLMs showing strong, human-aligned priors on desired behavior. To address this, we propose Self-Grounded Verification (SGV), a lightweight method that enables more effective use of MLLMs' knowledge and reasoning by harnessing their own sampling mechanisms via unconditional and conditional generation. SGV operates in two steps: first, the MLLM is elicited to retrieve broad priors about task completion, independent of the data under evaluation. Then, conditioned on self-generated priors, it reasons over and evaluates a candidate trajectory. Enhanced with SGV, MLLM verifiers show gains of up to 20 points in accuracy and failure detection rates, and can perform real-time supervision of heterogeneous agents, boosting task completion of a GUI specialist in OSWorld, a diffusion policy in robomimic, and a ReAct agent in VisualWebArena -- setting a new state of the art on the benchmark, surpassing the previous best by 48%.
Related papers
- Meta-Fair: AI-Assisted Fairness Testing of Large Language Models [2.9632404823837777]
Fairness is a core principle in the development of Artificial Intelligence (AI) systems.<n>Current approaches to fairness testing in large language models (LLMs) often rely on manual evaluation, fixed templates, deterministics, and curated datasets.<n>This work aims to lay the groundwork for a novel, automated method for testing fairness in LLMs.
arXiv Detail & Related papers (2025-07-03T11:20:59Z) - Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought [58.321044666612174]
Vad-R1 is an end-to-end MLLM-based framework for Video Anomaly Reasoning.<n>We design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies.<n>We also propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs.
arXiv Detail & Related papers (2025-05-26T12:05:16Z) - The Coherence Trap: When MLLM-Crafted Narratives Exploit Manipulated Visual Contexts [17.31556625041178]
multimedia manipulation has emerged as a critical challenge in combating AI-generated disinformation.<n>We propose a new adversarial pipeline that MLLMs to generate high-risk disinformation.<n>We present the Artifact-aware Manipulation Diagnosis Diagnosis via MLLM framework.
arXiv Detail & Related papers (2025-05-23T04:58:27Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - MAG-V: A Multi-Agent Framework for Synthetic Data Generation and Verification [5.666070277424383]
MAG-V is a framework to generate a dataset of questions that mimic customer queries.<n>Our synthetic data can improve agent performance on actual customer queries.
arXiv Detail & Related papers (2024-11-28T19:36:11Z) - Get my drift? Catching LLM Task Drift with Activation Deltas [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.<n>We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.<n>We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners [10.746821861109176]
Large Language Models (LLMs) have witnessed remarkable performance as zero-shot task planners for robotic tasks.<n>However, the open-loop nature of previous works makes LLM-based planning error-prone and fragile.<n>In this work, we introduce a framework for closed-loop LLM-based planning called KnowLoop, backed by an uncertainty-based MLLMs failure detector.
arXiv Detail & Related papers (2024-06-01T12:52:06Z) - A Self-Correcting Vision-Language-Action Model for Fast and Slow System Manipulation [30.207690822989292]
Self-corrected (SC-)VLA framework integrates fast system for directly predicting actions and slow system for reflecting on failed actions.<n>For the fast system, we incorporate parameter-efficient fine-tuning to equip the model with pose prediction capabilities.<n>For the slow system, we propose a Chain-of-Thought training strategy for failure correction, designed to mimic human reflection after a manipulation failure.
arXiv Detail & Related papers (2024-05-27T17:58:48Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgent is a model-agnostic framework designed to automate scientific data visualization tasks.
MatPlotBench is a high-quality benchmark consisting of 100 human-verified test cases.
arXiv Detail & Related papers (2024-02-18T04:28:28Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.