The Coherence Trap: When MLLM-Crafted Narratives Exploit Manipulated Visual Contexts
- URL: http://arxiv.org/abs/2505.17476v1
- Date: Fri, 23 May 2025 04:58:27 GMT
- Title: The Coherence Trap: When MLLM-Crafted Narratives Exploit Manipulated Visual Contexts
- Authors: Yuchen Zhang, Yaxiong Wang, Yujiao Wu, Lianwei Wu, Li Zhu,
- Abstract summary: multimedia manipulation has emerged as a critical challenge in combating AI-generated disinformation.<n>We propose a new adversarial pipeline that MLLMs to generate high-risk disinformation.<n>We present the Artifact-aware Manipulation Diagnosis Diagnosis via MLLM framework.
- Score: 17.31556625041178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection and grounding of multimedia manipulation has emerged as a critical challenge in combating AI-generated disinformation. While existing methods have made progress in recent years, we identify two fundamental limitations in current approaches: (1) Underestimation of MLLM-driven deception risk: prevailing techniques primarily address rule-based text manipulations, yet fail to account for sophisticated misinformation synthesized by multimodal large language models (MLLMs) that can dynamically generate semantically coherent, contextually plausible yet deceptive narratives conditioned on manipulated images; (2) Unrealistic misalignment artifacts: currently focused scenarios rely on artificially misaligned content that lacks semantic coherence, rendering them easily detectable. To address these gaps holistically, we propose a new adversarial pipeline that leverages MLLMs to generate high-risk disinformation. Our approach begins with constructing the MLLM-Driven Synthetic Multimodal (MDSM) dataset, where images are first altered using state-of-the-art editing techniques and then paired with MLLM-generated deceptive texts that maintain semantic consistency with the visual manipulations. Building upon this foundation, we present the Artifact-aware Manipulation Diagnosis via MLLM (AMD) framework featuring two key innovations: Artifact Pre-perception Encoding strategy and Manipulation-Oriented Reasoning, to tame MLLMs for the MDSM problem. Comprehensive experiments validate our framework's superior generalization capabilities as a unified architecture for detecting MLLM-powered multimodal deceptions.
Related papers
- Interpretable and Reliable Detection of AI-Generated Images via Grounded Reasoning in MLLMs [43.08776932101172]
We build a dataset of AI-generated images annotated with bounding boxes and descriptive captions.<n>We then finetune MLLMs through a multi-stage optimization strategy.<n>The resulting model achieves superior performance in both detecting AI-generated images and localizing visual flaws.
arXiv Detail & Related papers (2025-06-08T08:47:44Z) - Vad-R1: Towards Video Anomaly Reasoning via Perception-to-Cognition Chain-of-Thought [58.321044666612174]
Vad-R1 is an end-to-end MLLM-based framework for Video Anomaly Reasoning.<n>We design a Perception-to-Cognition Chain-of-Thought (P2C-CoT) that simulates the human process of recognizing anomalies.<n>We also propose an improved reinforcement learning algorithm AVA-GRPO, which explicitly incentivizes the anomaly reasoning capability of MLLMs.
arXiv Detail & Related papers (2025-05-26T12:05:16Z) - MIND-Edit: MLLM Insight-Driven Editing via Language-Vision Projection [13.467269066605452]
We propose MIND-Edit, an end-to-end image-editing framework integrating pretrained diffusion model with MLLM.<n> MIND-Edit introduces two complementary strategies: (1) a text instruction optimization strategy that clarifies ambiguous user instructions based on semantic reasoning from the MLLM, and (2) an MLLM insight-driven editing strategy that explicitly leverages the intrinsic visual understanding capability of the MLLM to infer editing intent.<n>Extensive experiments demonstrate that MIND-Edit outperforms state-of-the-art image editing methods in both quantitative metrics and visual quality, particularly under complex and challenging scenarios.
arXiv Detail & Related papers (2025-05-25T13:54:31Z) - MLLMs are Deeply Affected by Modality Bias [158.64371871084478]
Recent advances in Multimodal Large Language Models (MLLMs) have shown promising results in integrating diverse modalities such as texts and images.<n>MLLMs are heavily influenced by modality bias, often relying on language while under-utilizing other modalities like visual inputs.<n>This paper argues that MLLMs are deeply affected by modality bias, highlighting its manifestations across various tasks.
arXiv Detail & Related papers (2025-05-24T11:49:31Z) - MLLM-Enhanced Face Forgery Detection: A Vision-Language Fusion Solution [36.79921476565535]
VLF-FFD is a novel Vision-Language Fusion solution for MLLM-enhanced Face Forgery Detection.<n> EFF++ is a frame-level, explainability-driven extension of the widely used FaceForensics++ dataset.<n>VLF-FFD achieves state-of-the-art (SOTA) performance in both cross-dataset and intra-dataset evaluations.
arXiv Detail & Related papers (2025-05-04T06:58:21Z) - MADLLM: Multivariate Anomaly Detection via Pre-trained LLMs [28.943480387462703]
This paper introduces MADLLM, a novel multivariate anomaly detection method via pre-trained LLMs.<n>We design a new triple encoding technique to align the MTS modality with the text modality of LLMs. Specifically, this technique integrates the traditional patch embedding method with two novel embedding approaches.
arXiv Detail & Related papers (2025-04-13T10:07:52Z) - SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories [52.57696897619189]
We introduce the Human-Like Mask Modeling Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools.<n>HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens.<n>HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task.
arXiv Detail & Related papers (2025-03-11T17:08:54Z) - Towards General Visual-Linguistic Face Forgery Detection(V2) [90.6600794602029]
Face manipulation techniques have achieved significant advances, presenting serious challenges to security and social trust.<n>Recent works demonstrate that leveraging multimodal models can enhance the generalization and interpretability of face forgery detection.<n>We propose Face Forgery Text Generator (FFTG), a novel annotation pipeline that generates accurate text descriptions by leveraging forgery masks for initial region and type identification.
arXiv Detail & Related papers (2025-02-28T04:15:36Z) - Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
We introduce a novel learning paradigm termed MLLM4WTAL.
It harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors.
It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR)
arXiv Detail & Related papers (2024-11-13T09:37:24Z) - Math-PUMA: Progressive Upward Multimodal Alignment to Enhance Mathematical Reasoning [5.9767694994869425]
Multimodal Large Language Models (MLLMs) excel in solving text-based mathematical problems.
They struggle with mathematical diagrams since they are primarily trained on natural scene images.
We propose Math-PUMA, a methodology focused on Progressive Upward Multimodal Alignment.
arXiv Detail & Related papers (2024-08-16T10:11:05Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
Large language models (LLMs) have transformed the development of embodied intelligence.
This paper uncovers a significant backdoor security threat within this process.
By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM.
arXiv Detail & Related papers (2024-08-06T01:20:12Z) - Rethinking Visual Prompting for Multimodal Large Language Models with External Knowledge [76.45868419402265]
multimodal large language models (MLLMs) have made significant strides by training on vast high-quality image-text datasets.
However, the inherent difficulty in explicitly conveying fine-grained or spatially dense information in text, such as masks, poses a challenge for MLLMs.
This paper proposes a new visual prompt approach to integrate fine-grained external knowledge, gleaned from specialized vision models, into MLLMs.
arXiv Detail & Related papers (2024-07-05T17:43:30Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [71.87790090964734]
Large Language Models (LLMs) have demonstrated exceptional proficiency in text understanding and embedding tasks.<n>Their potential in multimodal representation, particularly for item-to-item (I2I) recommendations, remains underexplored.<n>We propose an end-to-end fine-tuning method that customizes the integration of any existing LLMs and vision encoders for efficient multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - Detecting and Grounding Multi-Modal Media Manipulation and Beyond [93.08116982163804]
We highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM4)
DGM4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content.
We propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities.
arXiv Detail & Related papers (2023-09-25T15:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.