Imbalanced Regression Pipeline Recommendation
- URL: http://arxiv.org/abs/2507.11901v1
- Date: Wed, 16 Jul 2025 04:34:02 GMT
- Title: Imbalanced Regression Pipeline Recommendation
- Authors: Juscimara G. Avelino, George D. C. Cavalcanti, Rafael M. O. Cruz,
- Abstract summary: This work proposes the Meta-learning for Imbalanced Regression (Meta-IR) framework.<n>It trains meta-classifiers to recommend the best pipeline composed of the resampling strategy and learning model per task.<n>Compared with AutoML frameworks, Meta-IR obtained better results.
- Score: 5.863538874435322
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imbalanced problems are prevalent in various real-world scenarios and are extensively explored in classification tasks. However, they also present challenges for regression tasks due to the rarity of certain target values. A common alternative is to employ balancing algorithms in preprocessing to address dataset imbalance. However, due to the variety of resampling methods and learning models, determining the optimal solution requires testing many combinations. Furthermore, the learning model, dataset, and evaluation metric affect the best strategies. This work proposes the Meta-learning for Imbalanced Regression (Meta-IR) framework, which diverges from existing literature by training meta-classifiers to recommend the best pipeline composed of the resampling strategy and learning model per task in a zero-shot fashion. The meta-classifiers are trained using a set of meta-features to learn how to map the meta-features to the classes indicating the best pipeline. We propose two formulations: Independent and Chained. Independent trains the meta-classifiers to separately indicate the best learning algorithm and resampling strategy. Chained involves a sequential procedure where the output of one meta-classifier is used as input for another to model intrinsic relationship factors. The Chained scenario showed superior performance, suggesting a relationship between the learning algorithm and the resampling strategy per task. Compared with AutoML frameworks, Meta-IR obtained better results. Moreover, compared with baselines of six learning algorithms and six resampling algorithms plus no resampling, totaling 42 (6 X 7) configurations, Meta-IR outperformed all of them. The code, data, and further information of the experiments can be found on GitHub: https://github.com/JusciAvelino/Meta-IR.
Related papers
- How Should We Meta-Learn Reinforcement Learning Algorithms? [74.37180723338591]
We carry out an empirical comparison of the different approaches when applied to a range of meta-learned algorithms.<n>In addition to meta-train and meta-test performance, we also investigate factors including the interpretability, sample cost and train time.<n>We propose several guidelines for meta-learning new RL algorithms which will help ensure that future learned algorithms are as performant as possible.
arXiv Detail & Related papers (2025-07-23T16:31:38Z) - Learning to Learn with Indispensable Connections [6.040904021861969]
We propose a novel meta-learning method called Meta-LTH that includes indispensible (necessary) connections.
Our method improves the classification accuracy by approximately 2% (20-way 1-shot task setting) for omniglot dataset.
arXiv Detail & Related papers (2023-04-06T04:53:13Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
We study the problem of model selection in offline RL with value function approximation.
We propose the first model selection algorithm for offline RL that achieves minimax rate-optimal inequalities up to logarithmic factors.
We conclude with several numerical simulations showing it is capable of reliably selecting a good model class.
arXiv Detail & Related papers (2022-11-03T17:32:34Z) - Which is the best model for my data? [0.0]
The proposed meta-learning approach relies on machine learning and involves four major steps.
We present a collection of 62 meta-features that address the problem of information cancellation when aggregation measure values involving positive and negative measurements.
We show that our meta-learning approach can correctly predict an optimal model for 91% of the synthetic datasets and for 87% of the real-world datasets.
arXiv Detail & Related papers (2022-10-26T13:15:43Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
Model-agnostic meta-learning (MAML) has become a popular research area.
Existing MAML algorithms rely on the episode' idea by sampling a few tasks and data points to update the meta-model at each iteration.
This paper proposes memory-based algorithms for MAML that converge with vanishing error.
arXiv Detail & Related papers (2021-06-09T08:47:58Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Improving Generalization in Meta-learning via Task Augmentation [69.83677015207527]
We propose two task augmentation methods, including MetaMix and Channel Shuffle.
Both MetaMix and Channel Shuffle outperform state-of-the-art results by a large margin across many datasets.
arXiv Detail & Related papers (2020-07-26T01:50:42Z) - Covariate Distribution Aware Meta-learning [3.494950334697974]
We propose a computationally feasible meta-learning algorithm by introducing meaningful relaxations.
We demonstrate the gains of our algorithm over bootstrapped based meta-learning baselines on popular classification benchmarks.
arXiv Detail & Related papers (2020-07-06T05:00:13Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
We develop a notion of incremental learning during the meta-training phase of meta-learning.
Our approach performs favorably at test time as compared to training a model with the full meta-training set.
arXiv Detail & Related papers (2020-02-11T01:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.